• 제목/요약/키워드: MLE using a quadratic approximation

검색결과 4건 처리시간 0.014초

Bayesian MCMC를 이용한 저수량 점 빈도분석: II. 적용과 비교분석 (At-site Low Flow Frequency Analysis Using Bayesian MCMC: II. Application and Comparative Studies)

  • 김상욱;이길성
    • 한국수자원학회논문집
    • /
    • 제41권1호
    • /
    • pp.49-63
    • /
    • 2008
  • 본 연구에서는 Bayesian MCMC 방법과 2차 근사식을 이용한 최우추정(Maximum Likelihood Estimation, MLE)방법 방법을 이용하여 낙동강 유역의 본류지점인 낙동, 왜관, 고령교, 진동지점에 대한 점 빈도분석을 수행하고 그 결과로써 불확실성을 포함한 빈도곡선을 작성하였다. 통계적 실험을 통한 두 가지 추정방법의 분석을 위하여 먼저 자료의 길이가 100인 8개의 합성 유량자료 셋을 생성하여 비교 연구를 수행하였으며, 이를 자료길이 36인 실측 유량 자료의 추정결과와 비교하였다. Bayesian MCMC 방법에 의한 평균값과 2차 근사식을 이용한 취우추정방법에 의한 모드에서의 2모수 Weibull 분포의 모수 추정값은 비슷한 결과를 보였으나, 불확실성을 나타내는 하한값과 상한값의 차이는 Bayesian MCMC 방법이 2차 근사식을 이용한 취우추정방법보다 불확실성을 감소시켜 나타내는 것을 알 수 있었다. 또한 실측 유량자료를 이용한 결과, 2차 근사식을 이용한 취우추정방법의 경우 자료의 길이가 감소됨에 따라 불확실성의 범위가 합성유량자료를 사용한 경우에 비해 상대적으로 증가되지만, Bayesian MCMC 방법의 경우에는 자료의 길이에 대한 영향이 거의 없다는 결론을 얻을 수 있었다. 그러므로 저수량 빈도분석을 수행하기 위해 충분한 자료를 확보할 수 없는 국내의 상황을 감안할 때, 위와 같은 결론으로부터 Bayesian MCMC 방법이 불확실성을 표현하는데 있어서 2차 근사식을 이용한 최우추정방법에 비해 합리적일 수 있다는 결론을 얻을 수 있었다.

An EM Algorithm for a Doubly Smoothed MLE in Normal Mixture Models

  • Seo, Byung-Tae
    • Communications for Statistical Applications and Methods
    • /
    • 제19권1호
    • /
    • pp.135-145
    • /
    • 2012
  • It is well known that the maximum likelihood estimator(MLE) in normal mixture models with unequal variances does not fall in the interior of the parameter space. Recently, a doubly smoothed maximum likelihood estimator(DS-MLE) (Seo and Lindsay, 2010) was proposed as a general alternative to the ordinary maximum likelihood estimator. Although this method gives a natural modification to the ordinary MLE, its computation is cumbersome due to intractable integrations. In this paper, we derive an EM algorithm for the DS-MLE under normal mixture models and propose a fast computational tool using a local quadratic approximation. The accuracy and speed of the proposed method is then presented via some numerical studies.

Bayesian MCMC를 이용한 저수량 점 빈도분석: I. 이론적 배경과 사전분포의 구축 (At-site Low Flow Frequency Analysis Using Bayesian MCMC: I. Theoretical Background and Construction of Prior Distribution)

  • 김상욱;이길성
    • 한국수자원학회논문집
    • /
    • 제41권1호
    • /
    • pp.35-47
    • /
    • 2008
  • 저수분석(low flow analysis)은 수자원공학에서 중요한 분야 중 하나이며, 특히 저수량 빈도분석(low flow frequency analysis)의 결과는 저수(貯水)용량의 설계, 물 수급계획, 오염원의 배치 및 관개와 생태계의 보존을 위한 수량과 수질의 관리에 중요하게 사용된다. 그러므로 본 연구에서는 저수량 빈도분석을 위한 점 빈도분석을 수행하였으며, 특히 빈도분석에 있어서의 불확실성을 탐색하기 위하여 Bayesian 방법을 적용하고 그 결과를 기존에 사용되던 불확실성 탐색방법과 비교하였다. 본 논문의Ⅰ편에서는 Bayesian 방법 중 사전분포(prior distribution)와 우도함수(likelihood function)의 복잡성에 상관없이 계산이 가능한 Bayesian MCMC(Bayesian Markov Chain Monte Carlo) 방법과 Metropolis-Hastings 알고리즘을 사용하기 위한 여러 과정의 이론적 배경과 Bayesian 방법에서 가장 중요한 요소인 사전분포를 구축하고 이를 비교 및 평가하였다. 고려된 사전분포는 자료에 기반하지 않은 사전분포와 자료에 기반한 사전분포로써 두 사전분포를 이용하여 Metropolis-Hastings 알고리즘을 수행하고 그 결과를 비교하여 저수량 빈도분석에 합리적인 사전분포를 선정하였다. 또한 알고리즘의 수행과정에서 필요한 제안분포(proposal distribution)를 적용하여 그에 따른 알고리즘의 효율성을 채택률(acceptance rate)을 산정하여 검증해 보았다. 사전분포의 분석 결과, 자료에 기반한 사전분포가 자료에 기반하지 않은 사전분포보다 정확성 및 불확실성의 표현에 있어서 우수한 결과를 제시하는 것을 확인할 수 있었고, 채택률을 이용한 알고리즘의 효용성 역시 기존 연구자들이 제시하였던 만족스러운 범위를 가지는 것을 알 수 있었다. 최종적으로 선정된 사전분포는 본 연구의 II편에서 Bayesian MCMC방법의 사전분포로 이용되었으며, 그 결과를 기존 불확실성의 추정방법의 하나인 2차 근사식을 이용한 최우추정(maximum likelihood estimation)방법의 결과와 비교하였다.

극치강우사상을 포함한 강우빈도분석의 불확실성 분석 (Analysis of Uncertainty of Rainfall Frequency Analysis Including Extreme Rainfall Events)

  • 김상욱;이길성;박영진
    • 한국수자원학회논문집
    • /
    • 제43권4호
    • /
    • pp.337-351
    • /
    • 2010
  • 극치사상을 예측하기 위한 기존의 빈도분석 결과의 이용에 대한 많은 문제점들이 부각되고 있다. 특히, 통계적 모형을 이용하기 위해서 흔히 사용되는 점근적 모형 (asymptotic model)의 합리적인 검토 없는 외삽 (extrapolation)은 산정된 확률 값을 과대 또는 과소평가하는 문제를 일으켜, 예측결과에 대한 불확실성을 과다하게 산정함으로써 불확실성에 대한 신뢰도를 감소시키는 문제가 있다. 그러므로 본 연구에서는 국내에서 극치강우사상을 포함한 강우자료의 빈도분석에 대한 연구사례를 제공하고 점근적 모형을 사용하는 경우 발생되는 불확실성을 감소시키기 위한 방법론을 제시하였다. 이를 위하여 본 연구에서는 극치강우사상의 빈도분석을 수행하는 데 있어서 최근 들어 여러 분야에서 다양하게 적용되고 있는 Bayesian MCMC (Markov Chain Monte Carlo) 방법을 사용하였으며, 그 결과를 최우추정방법 (Maximum likelihood estimation method)과 비교하였다. 특히 강우사상의 점 빈도분석에 흔히 이용되는 확률밀도함수로 GEV (Generalized Extreme Value) 분포와 Gumbel 분포를 모두 고려하여 두 분포의 결과를 비교하였으며, 이 과정에서 각각의 산정결과 및 불확실성은 근사식을 이용한 최우추정방법과 Bayesian 방법을 이용하여 각각 비교 및 분석되었다.