목적: ML-EM (The maximum likelihood-expectation maximization) 기법은 방출과 검출 과정에 대한 통계학적 모델에 기반한 재구성 알고리즘이다. ML-EM은 결과 영상의 정확성과 유용성에 있어 많은 이점이 있는 반면 반복적인 계산과 방대한 작업량 때문에 CPU(central processing unit)로 처리할 때 상당한 연산시간이 소요되었다. 본 연구에서는 GPU(graphic processing unit)의 병렬 처리 기술을 ML-EM 알고리즘에 적용하여 영상을 재구성하였다. 대상 및 방법: 엔비디아사(社)의 CUDA 기술을 이용하여 ML-EM 알고리즘의 투사 및 역투사 과정을 병렬화 전략을 구상하였으며 Geforce 9800 GTX+ 그래픽 카드를 이용하여 병렬화 연산을 수행하여 기존의 단일 CPU기반 연산법과 비교하였다. 각 반복횟수마다 투사 및 역투사 과정에 걸리는 총 지연 시간과 퍼센트 오차(percent error)를 측정하였다. 총 지연 시간에는 RAM과 GPU 메모리 간의 데이터 전송 지연 시간도 포함하였다. 결과: 모든 반복횟수에 대해 CPU 기반 ML-EM 알고리즘보다 GPU 기반 알고리즘이 더 빠른 성능을 나타내는 것을 확인하였다. 단일 CPU 및 GPU 기반 ML-EM의 32번 반복연산에 있어 각각 3.83초와 0.26초가 걸렸으며 GPU의 병렬연산의 경우 15배 정도의 개선된 성능을 보였다. 반복횟수가 1024까지 증가하였을 경우, CPU와 GPU 기반 알고리즘은 각각 18분과 8초의 연산시간이 걸렸다. GPU 기반 알고리즘이 약 135배 빠른 처리속도를 보였는데 이는 단일 CPU 계산이 특정 반복횟수 이후 나타나는 시간 지연에 따른 것이다. 결과적으로, GPU 기반 계산이 더 작은 편차와 빠른 속도를 보였다. 결론: ML-EM 알고리즘에 기초한 GPU기반 병렬 계산이 처리 속도와 안정성을 더 증진시킴을 확인하였으며 이를 활용해 다른 영상 재구성 알고리즘에도 적용시킬 수 있을 것으로 기대한다.
이 연구는 RespiTrainer를 활용한 옥시레이터 EM-100 환기에서 기관내삽관, 킹후두관기도기, 아이-겔, 마스크를 통한 호흡량과 기도압을 비교 분석하였다. 실험기간은 2015년 7월 20일부터 7월 21일까지이며, 수집된 자료는 SPSS 18.0을 이용하여 분석하였다. 연구결과 기관내삽관이 537 ml (95% CI 530~545 ml), 킹후두관기도기 502 ml (95% CI 499~506 ml), 아이-겔 488 ml (95% CI 485~491 ml), 산소마스크 499 ml (95% CI 496~503 ml)의 환기량을 보였다. 기도압력은 기관내삽관이 $11.34cmH_2O$ (95% CI $11.21{\sim}11.41cmH_2O$), 킹후두관기도기 $10.67cmH_2O$ (95% CI $10.60{\sim}10.75cmH_2O$), 아이-겔 $10.42cmH_2O$ (95% CI $10.35{\sim}10.67cmH_2O$), 산소마스크 $10.61cmH_2O$ (95% CI $10.55{\sim}10.68cmH_2O$)로 측정되었다. 결과적으로 옥시레이터 EM-100을 이용한 인공호흡으로 적절한 호흡량이 전달되는 것을 확인할 수 있었다.
이 연구는 산소소생기 Oxylator EM-100, MicroVenT CSI-3000, OXY-LIFE II을 이용하여 인공호흡을 시행할 때 환기량과 기도내압을 비교 분석하였다. 실험기간은 2017년 2월 13일로 수집된 자료는 SPSS 18.0을 이용하여 분석하였다. 연구결과 평균 환기량은 Oxylator EM-100이 551.44 ml (${\pm}18.70$), MicroVenT CSI-3000은 527.26 ml (${\pm}17.89$), OXY-LIFE II는 369.46 ml (${\pm}12.30$)의 환기량을 보였고, 평균 기도내압은 Oxylator EM-100이 $11.89cmH_2O$ (${\pm}.41$), MicroVenT CSI-3000은 $11.66cmH_2O$ (${\pm}.34$), OXY-LIFE II는 $8.02cmH_2O$ (${\pm}.25$)로 측정되었다. 이 연구는 현장에서 Oxylator EM-100, MicroVenT CSI-3000, and OXY-LIFE II에 따라 적절한 환기량 전달을 위한 방법을 검증하여 사용방법에 대한 기초자료를 제공하였다.
In this paper we present a color image segmentation algorithm based on statistical models. A novel deterministic annealing Expectation Maximization(EM) formula is derived to estimate the parameters of the Gaussian Mixture Model(GMM) which represents the multi-colored objects statistically. The experimental results show that the proposed deterministic annealing EM is a global optimal solution for the ML parameter estimation and the image field is segmented efficiently by using the parameter estimates.
Ginsenosides are metabolized (deglycosylated) by intestinal bacteria to active forms after oral administration. 20(S)-Protopanaxadiol $20-O-{\beta}-D-glucopyranoside$ (M1) and 20(S)-protopanaxatriol (M4) are the main intestinal bacterial metabolites (IBMs) of protopanaxadiol- and protopanaxatriol-type glycosides. M1 was selectively accumulated into the liver soon after its intravenous (i.v.) administration to mice, and mostly excreted as bile; however, some M1 was transformed to fatty acid ester (EMl) in the liver. EM1 was isolated from rats in a recovery dose of approximately $24mol\%.$ Structural analysis indicated that EM1 comprised a family of fatty acid mono-esters of M1. Because EM1 was not excreted as bile as Ml was, it was accumulated in the liver longer than M1. The in vitro cytotoxicity of M1 was attenuated by fatty acid esterification, implying that esterification is a detoxification reaction. However, esterified M1 (EM1) inhibited the growth of B16 melanoma more than Ml in vivo. The in vivo antitumor activity paralleled with the pharmacokinetic behavior. In the case of M4, orally administered M4 was absorbed from the small intestine into the mesenteric lymphatics followed by the rapid esterification of M4 with fatty acids and its spreading to other organs in the body and excretion as bile. The administration of M4 prior to tumor injection abrogated the enhanced lung metastasis in the mice pretreated with 2-chloroadenosine more effectively than in those pretreated with anti-asialo GMl. Both EM1 and EM4 did not directly affect tumor growth in vitro, whereas EM1 promoted tumor cell lysis by lymphocytes, particularly non-adherent splenocytes, and EM4 stimulated splenic NK cells to become cytotoxic to tumor cells. Thus, the esterification of IBM with fatty acids potentiated the antitumor activity of parental IBM through delay of the clearance and through immunostimulation. These results suggest that the fatty acid conjugates of IBMs may be the real active principles of ginsenosides in the body.
이 논문에서는 Swerling III 표적의 radar cross section (RCS)을 추정하기 위한 최대공산 (maximum likelihood (ML)) 추정방식을 제안하고 ML 추정값을 계산하기 위한 수치적 방법에 대해 검토하였다. 특히, ML 추정값을 계산하는 과정에서 expectation maximization (EM) 알고리즘에 바탕한 근사식을 활용하고, Monte Carlo 실험을 통해 이 수치적 방법의 정확도와 계산시간을 비교하여 가장 효율적인 방법을 제시한다. 이 결과는 기존에 제시된 방법의 성능과도 비교하여 제시한다. 나아가 Swerling I 표적의 경우에도 마찬가지로 동일한 방법이 가장 효율적이라는 것도 확인한다.
Communications for Statistical Applications and Methods
/
제14권3호
/
pp.517-530
/
2007
We studied a modelling process for unimodal and multimodal circular data by using von Mises and its mixture distribution. In particular we suggested EM algorithm to find ML estimates of the mixture model. Simulation results showed the suggested methods are very accurate. Applications to two kinds of real data sets are also included.
Ninety two strains of Streptococcus pyogenes were isolated from patients with pharyngitis, scarlet fever, skin infection, and invasive streptococcal infections in Seoul, Korea from January to December, 1998. All isolates were epidemiologically characterized by T protein serotype, and serum opacity factor (OF) detection to phenotypes. To analyze the genetic relationship, fifty two isolates including 32 erythromycin-clindamycin (Em-Cm) resistant strains, 20 antimicrobial susceptible strains were attempted to the pulsed-field gel electrophoresis (PFGE). T protein serotype showed 16 kinds in distribution including T12 and T4. Among the total isolates, 40 strains (43.5%) belonged to the T12 serotype and twenty strains (21.7%) to T4 serotype. On the other hand, when infection aspect of S. pyogenes isolates were analysed by T serotype distribution, T12 type was predominant for pharyngitidis which contributed to 21 strains (53%) and for skin infection isolates which contributed to 11 strains (28%), respectively. In case of T4 type, it was the most predominant pharyngitidis isolates which contributed to 8 strains (40%). In T serotype distribution of Em-Cm resistant strains, 27 strains (84%) of the thirty two showed T12 serotype. In minimum inhibitory concentration (MIC) values of Em-Cm resistance isolates, thirty two isolates showed resistant to erythromycin 27 strains (84%), had high MIC of >$128\;{\mu}g/ml$. And also to clindamycin, twenty two strains (69%) had high MIC of >$128\;{\mu}g/ml$. When OF detection of Em-Cm resistance of S. pyogenes isolates were analyzed by T serotype distribution, T12 serotype isolates revealed that all of the isolates except one strain were OF negative. In PFGE profile analysis to Em-Cm resistance isolates, of the twenty seven, Em-Cm resistance of T12 serotype isolates, 26 strains showed identical PFGE profile and all of these isolates revealed that OF negative. Eighty four percent of Em-Cm resistance S. pyogenes isolates had identical phenotype and PFGE profile. These results strongly suggested that the Em-Cm resistant S. pyogenes isolates from Seoul area showed close genetic correlation and PFGE could be available tool for molecular epidemiology.
Bayesian MAP-EM approaches have been quite useful or tomographic reconstruction in that they can stabilize the instability of well-known ML-EM approaches, and can incorporate a priori information on the underlying emission object. However, MAP reconstruction algorithms with expressive priors often suffer from the optimization problem when their objective unctions are nonquadratic. In our previous work [1], we showed that the use of deterministic annealing method greatly reduces computational burden or optimization and provides a good solution or nonquadratic objective unctions. Here, we further investigate the convergence of the deterministic annealing algorithm; our experimental results show that, while the solutions obtained by a simple quenching algorithm depend on the initial conditions, the estimates converged via deterministic annealing algorithm are consistent under various initial conditions.
개개인의 음성을 이용한 화자식별에서, 화자 모델을 추정하는데 가우시안 혼합모델이 주로 사용된다. 최대 우도 추정을 갖는 가우시안 혼합모델의 파라미터 추정은 Expectation-Maximisation (EM)을 사용하여 얻을 수 있다. 그러나, EM 알고리즘은 초기값에 상당히 민감하고, 혼합성분의 개수를 미리 알고 있어야 하는 단점이 있다. 본 논문에서는, EM 알고리즘의 문제점을 해결하기 위하여 가우시안 혼합모델을 위한 점진적 ${\cal}k-means$ 알고리즘에 의한 초기값을 갖는 EM 알고리즘을 제안한다. 제안된 방법은 혼합성분의 개수를 점진적 ${\cal}k-means$ 방법을 이용하여 한번에 하나씩 혼합성분을 추정하여 최적의 혼합성분이 얻어 질 때까지 이를 반복 수행한다. 하나의 혼합성분이 추가될 때마다, 새로 얻어진 혼합성분과 이전에 구한 혼합성분들간의 상호 관계를 각각 측정한다. 이로부터, 통계적으로 독립인 최적의 혼합성분 개수를 추정할 수 있다. 제안된 방법의 성능을 확인하기 위하여 임의의 생성 데이터와 실제 음성을 사용하였다. 실험 결과에서, 제안된 방법이 기존의 방법보다 화자 식별 성능이 우수하였으며, 또한 성능을 유지하면서도 계산량 감소의 효과까지 볼 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.