• 제목/요약/키워드: ML techniques

검색결과 341건 처리시간 0.026초

A Pragmatic Framework for Predicting Change Prone Files Using Machine Learning Techniques with Java-based Software

  • Loveleen Kaur;Ashutosh Mishra
    • Asia pacific journal of information systems
    • /
    • 제30권3호
    • /
    • pp.457-496
    • /
    • 2020
  • This study aims to extensively analyze the performance of various Machine Learning (ML) techniques for predicting version to version change-proneness of source code Java files. 17 object-oriented metrics have been utilized in this work for predicting change-prone files using 31 ML techniques and the framework proposed has been implemented on various consecutive releases of two Java-based software projects available as plug-ins. 10-fold and inter-release validation methods have been employed to validate the models and statistical tests provide supplementary information regarding the reliability and significance of the results. The results of experiments conducted in this article indicate that the ML techniques perform differently under the different validation settings. The results also confirm the proficiency of the selected ML techniques in lieu of developing change-proneness prediction models which could aid the software engineers in the initial stages of software development for classifying change-prone Java files of a software, in turn aiding in the trend estimation of change-proneness over future versions.

Development of ML and IoT Enabled Disease Diagnosis Model for a Smart Healthcare System

  • Mehra, Navita;Mittal, Pooja
    • International Journal of Computer Science & Network Security
    • /
    • 제22권7호
    • /
    • pp.1-12
    • /
    • 2022
  • The current progression in the Internet of Things (IoT) and Machine Learning (ML) based technologies converted the traditional healthcare system into a smart healthcare system. The incorporation of IoT and ML has changed the way of treating patients and offers lots of opportunities in the healthcare domain. In this view, this research article presents a new IoT and ML-based disease diagnosis model for the diagnosis of different diseases. In the proposed model, vital signs are collected via IoT-based smart medical devices, and the analysis is done by using different data mining techniques for detecting the possibility of risk in people's health status. Recommendations are made based on the results generated by different data mining techniques, for high-risk patients, an emergency alert will be generated to healthcare service providers and family members. Implementation of this model is done on Anaconda Jupyter notebook by using different Python libraries in it. The result states that among all data mining techniques, SVM achieved the highest accuracy of 0.897 on the same dataset for classification of Parkinson's disease.

Machine learning modeling of irradiation embrittlement in low alloy steel of nuclear power plants

  • Lee, Gyeong-Geun;Kim, Min-Chul;Lee, Bong-Sang
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4022-4032
    • /
    • 2021
  • In this study, machine learning (ML) techniques were used to model surveillance test data of nuclear power plants from an international database of the ASTM E10.02 committee. Regression modeling was conducted using various techniques, including Cubist, XGBoost, and a support vector machine. The root mean square deviation of each ML model for the baseline dataset was less than that of the ASTM E900-15 nonlinear regression model. With respect to the interpolation, the ML methods provided excellent predictions with relatively few computations when applied to the given data range. The effect of the explanatory variables on the transition temperature shift (TTS) for the ML methods was analyzed, and the trends were slightly different from those for the ASTM E900-15 model. ML methods showed some weakness in the extrapolation of the fluence in comparison to the ASTM E900-15, while the Cubist method achieved an extrapolation to a certain extent. To achieve a more reliable prediction of the TTS, it was confirmed that advanced techniques should be considered for extrapolation when applying ML modeling.

손가락 움직임 인식을 위한 웨어러블 디바이스 설계 및 ML 기법별 성능 분석 (Design and Performance Analysis of ML Techniques for Finger Motion Recognition)

  • 정우순;이형규
    • 한국산업정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.129-136
    • /
    • 2020
  • 손가락 움직임 인식을 통한 제어는 직관적인 인간-컴퓨터 상호작용 방법의 하나이다. 본 연구에서는 여러 가지 ML (Machine learning) 기법을 사용하여 효율적인 손가락 움직임 인식을 위한 웨어러블 디바이스를 구현한다. 움직임 인식을 위한 시계열 데이터 분석에 전통적으로 사용되어 온 HMM (Hidden markov model) 및 DTW (Dynamic time warping) 기법뿐만 아니라 NN (Neural network) 기법을 적용하여 손가락 움직임 인식의 효율성 및 정확성을 비교하고 분석한다. 제안된 시스템의 경우, 경량화된 ML 모델을 설계하기 위해 각 ML 기법에 대해 최적화된 전처리 프로세스를 적용한다. 실험 결과, 최적화된 NN, HMM 및 DTW 기반 손가락 움직임 인식시스템은 각각 99.1%, 96.6%, 95.9%의 정확도를 제공한다.

Resume Classification System using Natural Language Processing & Machine Learning Techniques

  • Irfan Ali;Nimra;Ghulam Mujtaba;Zahid Hussain Khand;Zafar Ali;Sajid Khan
    • International Journal of Computer Science & Network Security
    • /
    • 제24권7호
    • /
    • pp.108-117
    • /
    • 2024
  • The selection and recommendation of a suitable job applicant from the pool of thousands of applications are often daunting jobs for an employer. The recommendation and selection process significantly increases the workload of the concerned department of an employer. Thus, Resume Classification System using the Natural Language Processing (NLP) and Machine Learning (ML) techniques could automate this tedious process and ease the job of an employer. Moreover, the automation of this process can significantly expedite and transparent the applicants' selection process with mere human involvement. Nevertheless, various Machine Learning approaches have been proposed to develop Resume Classification Systems. However, this study presents an automated NLP and ML-based system that classifies the Resumes according to job categories with performance guarantees. This study employs various ML algorithms and NLP techniques to measure the accuracy of Resume Classification Systems and proposes a solution with better accuracy and reliability in different settings. To demonstrate the significance of NLP & ML techniques for processing & classification of Resumes, the extracted features were tested on nine machine learning models Support Vector Machine - SVM (Linear, SGD, SVC & NuSVC), Naïve Bayes (Bernoulli, Multinomial & Gaussian), K-Nearest Neighbor (KNN) and Logistic Regression (LR). The Term-Frequency Inverse Document (TF-IDF) feature representation scheme proven suitable for Resume Classification Task. The developed models were evaluated using F-ScoreM, RecallM, PrecissionM, and overall Accuracy. The experimental results indicate that using the One-Vs-Rest-Classification strategy for this multi-class Resume Classification task, the SVM class of Machine Learning algorithms performed better on the study dataset with over 96% overall accuracy. The promising results suggest that NLP & ML techniques employed in this study could be used for the Resume Classification task.

Machine Learning in FET-based Chemical and Biological Sensors: A Mini Review

  • Ahn, Jae-Hyuk
    • 센서학회지
    • /
    • 제30권1호
    • /
    • pp.1-9
    • /
    • 2021
  • This mini review summarizes some of the recent advances in machine-learning (ML)-driven chemical and biological sensors. Specific focus is on field-effect-transistor (FET)-based sensors with a description of their structures and detection mechanisms. Key ML techniques are briefly reviewed for an audience not familiar with the basic principles. We mainly discuss two aspects: (1) data analysis based on ML and (2) ML applied to sensor design. In conclusion, the challenges and opportunities for the advancement of ML-based sensors are briefly considered.

Avoiding Indefiniteness in Criteria for Maximum Likelihood Bearing Estimation with Arbitrary Array Configuration

  • Suzuki, Masakiyo
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.1807-1810
    • /
    • 2002
  • This paper presents a technique for avoid- ing indefiniteness in Maximum Likelihood (ML) criteria for Direction-of-Arrival (DOA) finding using a sensor ar- ray with arbitrary configuration. The ML criterion has singular points in the solution space where the criterion becomes indefinite. Solutions fly iterative techniques for ML bearing estimation may oscillate because of numerical instability which occurs due to the indefiniteness, when bearings more than one approach to the identical value. The oscillation makes the condition for terminating iterations complex. This paper proposes a technique for avoiding the indefiniteness in ML criteria.

  • PDF

Modeling of AutoML using Colored Petri Net

  • Yo-Seob, Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제10권4호
    • /
    • pp.420-426
    • /
    • 2022
  • Developing a machine learning model and putting it into production goes through a number of steps. Automated Machine Learning(AutoML) appeared to increase productivity and efficiency by automating inefficient tasks that occur while repeating this process whenever machine learning is applied. The high degree of automation of AutoML models allows non-experts to use machine learning models and techniques without the need to become machine learning experts. Automating the process of applying machine learning end-to-end with AutoML models has the added benefit of creating simpler solutions, generating these solutions faster, and often generating models that outperform hand-designed models. In this paper, the AutoML data is collected and AutoML's Color Petri net model is created and analyzed based on it.

마이크로어레이 데이터의 구조적 유사성을 이용한 효율적인 저장 구조의 설계 (Design of Efficient Storage Exploiting Structural Similarity in Microarray Data)

  • 윤종한;신동규;신동일
    • 정보처리학회논문지D
    • /
    • 제16D권5호
    • /
    • pp.643-650
    • /
    • 2009
  • 생명정보 대량 획득기술의 하나인 마이크로어레이(microarray)는 DNA와 각종 유전자 연구에 사용되는 도구로 확립되면서, 생명정보학(Bioinformatics)분야의 발전에 크게 기여하였다. 그러나 마이크로어레이는 생명정보학분야의 핵심기술 중 하나로 발전하였음에도 불구하고 실험으로 생성되는 데이터는 형태가 다양하고 매우 복잡한 형태를 갖기 때문에 데이터의 공유나 저장에서 많은 어려움을 겪고 있다. 본 논문에서는 마이크로어레이 데이터의 관리를 원활하게 하기위한 XML 기반의 표준 포맷인 MAGE-ML스키마에서 구조적으로 유사한 엘리먼트가 반복적으로 나타나는 특징과 대다수의 엘리먼트들이 특정 엘리먼트의 자식으로만 온다는 구조적 특징을 이용하여, MAGE-ML의 스키마를 단순화 하고 저장구조를 효율적으로 설계하는 방법을 제안한다. 이 방법에서 인라인 기법(Inlining Technique)을 이용한 스키마의 단순화와 새롭게 제시하는 엘리먼트의 구조적 형태를 기준으로 분류하는 기법을 이용한다. 이를 통하여 데이터베이스 스키마는 간략화 되며 테이블조인의 횟수가 줄어들고 성능은 향상된다.

Role of Machine Learning in Intrusion Detection System: A Systematic Review

  • Alhasani, Areej;Al omrani, Faten;Alzahrani, Taghreed;alFahhad, Rehab;Alotaibi, Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.155-162
    • /
    • 2022
  • Over the last 10 years, there has been rapid growth in the use of Machine Learning (ML) techniques to automate the process of intrusion threat detection at a scale never imagined before. This has prompted researchers, software engineers, and network specialists to rethink the applications of machine ML techniques particularly in the area of cybersecurity. As a result there exists numerous research documentations on the use ML techniques to detect and block cyber-attacks. This article is a systematic review involving the identification of published scholarly articles as found on IEEE Explore and Scopus databases. The articles exclusively related to the use of machine learning in Intrusion Detection Systems (IDS). Methods, concepts, results, and conclusions as found in the texts are analyzed. A description on the process taken in the identification of the research articles included: First, an introduction to the topic which is followed by a methodology section. A table is used to list identified research articles in the form of title, authors, methodology, and key findings.