• Title/Summary/Keyword: ML Detect

Search Result 243, Processing Time 0.034 seconds

Simultaneous Detection of Three Tobamoviruses in Cucurbits by Rapid Immunofilter Paper Assay

  • Park, Gug-Seoun;Kim, Jae-Hyun;Chung, Bong-Nam;Kim, Hyun-Ran;Park, Yong-Mun
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.106-109
    • /
    • 2001
  • A multi-rapid immunofilter paper assay (multi-RIPA) system was prepared for simultaneous diagnosis of three Tobamoviruses, Cucumber green mottle mosaic virus (CGMMV), Kyuri green mottle mosaic virus (KGMMV), and Zucchini green mottle mosaic virus (ZGMMV) in cucurbitaceous crops. Each of these viruses was specifically detected by the multi-RIPA from cucumber, watermelon, zucchini, and bottle gourd inoculated with the three Tobamoviruses singly or in combination. The three viruses could infect cucumber, watermelon, and bottle gourd ; however, CGMMV could not infect zucchini as the latex-coated CGMMV antibody showed a negative reaction in the multi-RIPA of the virus-infected plant extract. When the minimum detection level of multi-RIPA was compared with that of double antibody sandwich-enzyme-linked immunosorbent assay (DAS-ELISA) using CGMMV, the latter was 10 times more sensitive than the former. The detection limit of the multi-RIPA for the purified CGMMV was 50 ng/ml. In a survey of the threeviruses in cucurbits growing in commercial fields in 1999 and 2000, CGMMV was detected in watermelon and cucumber, and ZGMMV was detected only in zucchini growing in plastic houses at the suburbs of Chonju, Korea. However, KGMMV was not found in the commercially growing cucurbit crops in our study, The results suggest that the multi-RIPA can be a simple, rapid, specific and convenient tool to detect simultaneously the Tobamoviruses.

  • PDF

Studies on the pathogenesis of Korean isolate of Aujeszky's disease virus in experimentally infected piglets II. Immunohistochemistry and detection of viral nucleic acids by in situ hybridization (Aujeszky's disease virus 국내분리주 접종자돈의 병리발생에 관한 연구 II. 면역조직화학 및 in situ hybridization 기법을 이용한 항원과 핵산 검출)

  • Cho, Woo-young;Cho, Sung-whan;Park, Choi-gui;Kim, Jae-hoon;Hyun, Bang-hoon;Yoon, Yong-dhuk;Kweon, Chang-hee
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.4
    • /
    • pp.859-871
    • /
    • 1996
  • This study was conducted to elucidate the distribution of Aujeszky's disease viral nucleic acids and antigens in the central nervous system (CNS) of piglets. The first Korean isolate of Aujeszky's disease virus(ADV) that isolated from naturally infected piglets in Yang San, was inoculated into 32 day old piglets with $10^{5.9}TCID_{50}/ml$ through intranasal or intramuscular route. These piglets were sacrificed at every 24hrs for 8 days. The immunohistochemistry (IHC) was conducted to detect the viral antigens in paraffin-embedded tissue sections using avidin-biotin-peroxidase complex (ABC) method. The viral nucleic acids were detected by in situ hybridization (ISH) using ADV specific DNA probe labeled with digoxigenin. The ADV antigens were detected in reticuloendothelial cells of spleen, lymph nodes and tonsil, alveolar walls, leptomeningeal vascular walls, inflammatory foci of each organ, and nerve cells. The viral nucleic acids were detected in the spinal trigeminal nucleus and its tracts of the pons and medulla oblongata by the ISH technique. The pathways of AD viruses in CNS were determined by IHC and ISH. In the intranasally inoculated group, the viruses in nasal mucosa moved to medulla oblongata and pons through the trigeminal nerve. In case of intramuscullarly inoculated group, viruses moved to brain via lymphoid organs or spinal nerves from sciatic nerves.

  • PDF

A Case of Bentazone Poisoning Mimicking Organophosphate Intoxication (유기인산 화합물 중독으로 의심했던 벤타존 중독 1례)

  • Jung, Hyun-Min;Kim, Ji-Hye;Han, Seung-Baik;Paik, Jin-Hui;Kim, Ji-Yoon;Kim, Jun-Sig
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.8 no.2
    • /
    • pp.122-124
    • /
    • 2010
  • $Basagran^{(R)}$ is a herbicide that is widely used in the field and it acts by interfering with photosynthesis in plants. It consists of bentazone, 2-methyl-4-chlorophenoxyacetic acid (MCPA) and surfactants. Bentazone is commonly used, but poisoning due to Bentazone has not been previously reported in Korea. The patients with toxic effects of bentazone show mild to severe symptoms and various complications. We report here on a case of a woman who intentionally ingested 500 ml of $Basagran^{(R)}$ and she was discharged without complication. As soon as the patient visited the emergency department, we started to treat her as if she had organophosphate intoxication because of the cholinergic symptoms. We could not detect the bentazone in her serum and urine, and we could confirm $Basagran^{(R)}$ ingestion only after getting information from her husband. Bentazone poisoning may induce harmful complications like muscle rigidity, rhabdomyolysis, respiratory failure and cardiac arrest. A detailed history taking, an accurate analysis method and early conservative management will be helpful for patients with acute bentazone poisoning.

  • PDF

Analysis of $\triangle^9$-Tetrahydrocannabinol and 11-nor-9-carboxytetrahydrocannabinol in Hair by Gas Chromatography/Mass Spectrometry (가스크로마토그라피/질량분석기에 의한 모발중 대마성분 분석)

  • 양원경;한은영;박용훈;임미애;정희선
    • YAKHAK HOEJI
    • /
    • v.48 no.3
    • /
    • pp.207-212
    • /
    • 2004
  • An analytic method was developed for the quantitation of $\Delta$$^{9}-$ tetrahydrocannabinol (THC) and 11-nor-9-carboxy THC (THC-COOH) in human hair. After hair samples were pulverized using Freezer Mill, deuterated internal standards were added and digested in 1 N NaOH at $100^{\circ}C$ water bath for 30 min. Digest solutions were extracted by 5 ml hexane:ethyl acetate (90:10) after acidification with acetic acid. The organic phase was evaporated under N 2 and derivatized by BSTFA (with 1% TMCS) at $85^{\circ}C$ for 45 min. The derivatized solution was separated on HP-5MS column ($30m{\times}0.25mm{\times}0.25mm$) and detected using EI-GC-MS with selective ion monitoring mode. The assay of calibration was ranged from 5 to 100 ng/50 mg hair ($r^2$>0.99) for THC and THC-COOH. Within and between-run precision were calculated at 6, 30, 60 ng/50 mg hair with coefficients of variation less than 11%. Within and between run accuracies at the same concentrations were$\pm$14% and $\pm$30% of target for both analytes, respectively. Absolute and relative recovery at 10 and 100 ng were 60∼91%. The method was used to detect and quantify THC and THC-COOH in cannabis abuser's hairs (N = 16) and SRM (N=5, THC 1 ng/mg, NIST). We detected THC and THC-COOH in only one hair sample. In SRM, % accuracy was 93% (range 86∼103%) and precision (% CV) was 8.14. We began to set up a quantitative analysis of THC and THC-COOH using EI-GC-MS. Continuously, we need to modify and develop this method in order to apply for identification in cannanbis users' hair.

The protective effect of Halal food extract in pancreatic beta cell lines.

  • Kim, Seong-sun;Jin, Yu-Mi;Song, Young-Jae;AYE, AYE;Soh, Ju-Ryoun;Jeon, Yong-Deok;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.121-121
    • /
    • 2019
  • In Islamic dietary guidelines, Halal foods are allowed as edible blessed food. Most foods were categorized within halal for Muslims. The main point of Halal food is that foods are clean in every process and based on Halal standard which might be different in each country. Most pancreatic ${\beta}$ cells synthetize, store, and release insulin. Specific molecular, functional as well as ultrastructural traits of pancreatic ${\beta}$ cells could control their insulin secretion properties and survival phentoype. Insulin-secreting pancreatic ${\beta}$-cells are essential regulators of mammalian metabolism. In addition, the pancreatic ${\beta}$ cell plays an important role in the pathogenesis of type 1 and type 2 diabetes as improving glucose homeostasis by preserving, expanding and improving the function of this key cell type. However, the pharmacological effect of halal food has not been unclear yet, especially food habit-dependent diabetes. The aim of the this study was to determine the preventive effect of Iran plants extract (Almond, Garlic, Cumin, Ginkgo biloba, Holy basil, Psyllium, Satureja khuzistanica, Fenugreek, Green tea, Ipomoea betatas, Blueberry) on RINm5F cells and MIN6 cells as pancreatic ${\beta}$ cell line. The cytotoxicity of the extracts of Iran plants on RINm5F cells and MIN6 cells were measured by using MTT assays. The preventive effects of Iran plant extracts were measured by WST-8 cell proliferation assay on streptozotocin (STZ)-induced cell death in MIN6 cells. In presented result showed that all extract of Iran plants (0.01-10mg/ml) did not show cytotoxicity in RINm5F cells and MIN6 cells. Among non-cytotoxic extract, the protective effects could be detect in high dose concentration. These results suggest that the extract of Iran plants may serve as a potential therapy for diabetes.

  • PDF

Generation of a Human Monoclonal Antibody to Cross-Reactive Material 197 (CRM197) and Development of a Sandwich ELISA for CRM197 Conjugate Vaccines

  • Kim, Dain;Yoon, Hyeseon;Kim, Sangkyu;Wi, Jimin;Chae, Heesu;Jo, Gyunghee;Yoon, Jun-Yeol;Kim, Heeyoun;Lee, Chankyu;Kim, Se-Ho;Hong, Hyo Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2113-2120
    • /
    • 2018
  • Cross-reactive material 197 ($CRM_{197}$) is a non-toxic mutant of diphtheria toxin containing a single amino acid substitution of glycine 52 with glutamic acid. $CRM_{197}$ has been used as a carrier protein for poorly immunogenic polysaccharide antigens to improve immune responses. In this study, to develop a sandwich ELISA that can detect $CRM_{197}$ and $CRM_{197}$ conjugate vaccines, we generated a human anti-$CRM_{197}$ monoclonal antibody (mAb) 3F9 using a phage-displayed human synthetic Fab library and produced mouse anti-$CRM_{197}$ polyclonal antibody. The affinity ($K_D$) of 3F9 for $CRM_{197}$ was 3.55 nM, based on Bio-Layer interferometry, and it bound specifically to the B fragment of $CRM_{197}$. The sandwich ELISA was carried out using 3F9 as a capture antibody and the mouse polyclonal antibody as a detection antibody. The detection limit of the sandwich ELISA was <1 ng/ml $CRM_{197}$. In addition, the 3F9 antibody bound to the $CRM_{197}$-polysaccharide conjugates tested in a dose-dependent manner. This ELISA system will be useful for the quantification and characterization of $CRM_{197}$ and $CRM_{197}$ conjugate vaccines. To our knowledge, this study is the first to generate a human monoclonal antibody against $CRM_{197}$ and to develop a sandwich ELISA for $CRM_{197}$ conjugate vaccines.

Improvement of Attack Traffic Classification Performance of Intrusion Detection Model Using the Characteristics of Softmax Function (소프트맥스 함수 특성을 활용한 침입탐지 모델의 공격 트래픽 분류성능 향상 방안)

  • Kim, Young-won;Lee, Soo-jin
    • Convergence Security Journal
    • /
    • v.20 no.4
    • /
    • pp.81-90
    • /
    • 2020
  • In the real world, new types of attacks or variants are constantly emerging, but attack traffic classification models developed through artificial neural networks and supervised learning do not properly detect new types of attacks that have not been trained. Most of the previous studies overlooked this problem and focused only on improving the structure of their artificial neural networks. As a result, a number of new attacks were frequently classified as normal traffic, and attack traffic classification performance was severly degraded. On the other hand, the softmax function, which outputs the probability that each class is correctly classified in the multi-class classification as a result, also has a significant impact on the classification performance because it fails to calculate the softmax score properly for a new type of attack traffic that has not been trained. In this paper, based on this characteristic of softmax function, we propose an efficient method to improve the classification performance against new types of attacks by classifying traffic with a probability below a certain level as attacks, and demonstrate the efficiency of our approach through experiments.

Development and Optimization of a Rapid Colorimetric Membrane Immunoassay for Porphyromonas gingivalis

  • Lee, Jiyon;Choi, Myoung-Kwon;Kim, Jinju;Chun, SeChul;Kim, Hong-Gyum;Lee, HoSung;Kim, JinSoo;Lee, Dongwook;Han, Seung-Hyun;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.705-709
    • /
    • 2021
  • Porphyromonas gingivalis (P. gingivalis) is a major bacterial pathogen that causes periodontitis, a chronic inflammatory disease of tissues around the teeth. Periodontitis is known to be related to other diseases, such as oral cancer, Alzheimer's disease, and rheumatism. Thus, a precise and sensitive test to detect P. gingivalis is necessary for the early diagnosis of periodontitis. The objective of this study was to optimize a rapid visual detection system for P. gingivalis. First, we performed a visual membrane immunoassay using 3,3',5,5'-tetramethylbenzidine (TMB; blue) and coating and detection antibodies that could bind to the host laboratory strain, ATCC 33277. Antibodies against the P. gingivalis surface adhesion molecules RgpB (arginine proteinase) and Kgp (lysine proteinase) were determined to be the most specific coating and detection antibodies, respectively. Using these two selected antibodies, the streptavidin-horseradish peroxidase (HRP) reaction was performed using a nitrocellulose membrane and visualized with a detection range of 103-105 bacterial cells/ml following incubation for 15 min. These selected conditions were applied to test other oral bacteria, and the results showed that P. gingivalis could be detected without cross-reactivity to other bacteria, including Streptococcus mutans and Escherichia fergusonii. Furthermore, three clinical strains of P. gingivalis, KCOM 2880, KCOM 2803, and KCOM 3190, were also recognized using this optimized enzyme immunoassay (EIA) system. To conclude, we established optimized conditions for P. gingivalis detection with specificity, accuracy, and sensitivity. These results could be utilized to manufacture economical and rapid detection kits for P. gingivalis.

Development of Nucleic Acid Lateral Flow Immunoassay for Rapid and Accurate Detection of Chikungunya Virus in Indonesia

  • Ajie, Mandala;Pascapurnama, Dyshelly Nurkartika;Prodjosoewojo, Susantina;Kusumawardani, Shinta;Djauhari, Hofiya;Handali, Sukwan;Alisjahbana, Bachti;Chaidir, Lidya
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1716-1721
    • /
    • 2021
  • Chikungunya fever is an arboviral disease caused by the Chikungunya virus (CHIKV). The disease has similar clinical manifestations with other acute febrile illnesses which complicates differential diagnosis in low-resource settings. We aimed to develop a rapid test for CHIKV detection based on the nucleic acid lateral flow immunoassay technology. The system consists of a primer set that recognizes the E1 region of the CHIKV genome and test strips in an enclosed cassette which are used to detect amplicons labeled with FITC/biotin. Amplification of the viral genome was done using open-source PCR, a low-cost open-source thermal cycler. Assay performance was evaluated using a panel of RNA isolated from patients' blood with confirmed CHIKV (n = 8) and dengue virus (n = 20) infection. The open-source PCR-NALFIA platform had a limit of detection of 10 RNA copies/ml. The assay had a sensitivity and specificity of 100% (95% CI: 67.56% - 100%) and 100% (95% CI: 83.89% - 100%), respectively, compared to reference standards of any positive virus culture on C6/36 cell lines and/or qRT-PCR. Further evaluation of its performance using a larger sample size may provide important data to extend its usefulness, especially its utilization in the peripheral healthcare facilities with scarce resources and outbreak situations.

Minor Coat Protein pIII Domain (N1N2) of Bacteriophage CTXф Confers a Novel Surface Plasmon Resonance Biosensor for Rapid Detection of Vibrio cholerae

  • Shin, Hae Ja;Hyeon, Seok Hywan;Cho, Jae Ho;Lim, Woon Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.510-518
    • /
    • 2021
  • Bacteriophages are considered excellent sensing elements for platforms detecting bacteria. However, their lytic cycle has restricted their efficacy. Here, we used the minor coat protein pIII domain (N1N2) of phage CTXφ to construct a novel surface plasmon resonance (SPR) biosensor that could detect Vibrio cholerae. N1N2 harboring the domains required for phage adsorption and entry was obtained from Escherichia coli using recombinant protein expression and purification. SDS-PAGE revealed an approximate size of 30 kDa for N1N2. Dot blot and transmission electron microscopy analyses revealed that the protein bound to the host V. cholerae but not to non-host E. coli K-12 cells. Next, we used amine-coupling to develop a novel recombinant N1N2 (rN1N2)-functionalized SPR biosensor by immobilizing rN1N2 proteins on gold substrates and using SPR to monitor the binding kinetics of the proteins with target bacteria. We observed rapid detection of V. cholerae in the range of approximately 103 to 109 CFU/ml but not of E. coli at any tested concentration, thereby confirming that the biosensor exhibited differential recognition and binding. The results indicate that the novel biosensor can rapidly monitor a target pathogenic microorganism in the environment and is very useful for monitoring food safety and facilitating early disease prevention.