• Title/Summary/Keyword: MKP4

Search Result 16, Processing Time 0.022 seconds

Effect of Dietary Monobasic Potassium Phosphate Levels on Water Quality and the Growth of Far Eastern Catfish Silurus asotus and Four Leafy Vegetables in a Hybrid Biofloc Technology Aquaponic System (사료 내 일인산칼륨(MKP) 수준이 Hybrid 바이오플락(BFT) 아쿠아포닉 시스템 내 메기(Silurus asotus) 및 엽채류 4종의 생산성과 수질변화에 미치는 영향)

  • Lee, Dong-Hoon;Kim, Jin-Young;Lim, Seong-Ryul;Kim, Dal-Young;Kim, Joo-Min;Shin, Seung-Jun;Kim, Jeong-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.2
    • /
    • pp.159-172
    • /
    • 2019
  • This study investigated the effects of dietary monobasic potassium phosphate (MKP) on the growth of the far eastern catfish Silurus asotus and four leafy vegetables in a hybrid biofloc technology aquaponic system. To an experimental diet containing 45% protein and 7% lipid, 1, 2, 3 or 4% MKP was added and was designated as MKP1, MKP2, MKP3, and MKP4, respectively. The optimum MKP levels were determined for the growth of fish and four leafy vegetables over 10 weeks. After the 10-week feeding trial, weight gain, feed efficiency, specific growth rate and protein efficiency ratio were higher in the fish groups fed MKP2 and MKP3 than in the other groups (P<0.05). The growth of the four leafy vegetables was also higher in the fish groups fed MKP2 and MKP3. Water quality [dissolved oxygen, pH, water temperature, electrical conductivity, turbidity, total ammonia nitrogen (TAN), $NO_2-N$, $NO_3-N$ and $PO_4-P$] was measured six times a week using a portable water quality meter and reagent measurements. The TAN (4.58-20.40 mg/L), $NO_3-N$ (24.12-52.40 mg/L) and $PO_4-P$ (20.38-48.48 mg/L) levels increased with time, while the $NO_2-N$ level remained below 0.1 mg/L throughout the study.

Virtual Screening and Biochemical Evaluation of Mitogen-activated Protein Kinase Phosphatase 4 Inhibitors

  • Park, Hwangseo;Jeon, Jeong-Yi;Ryu, Seong Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3772-3776
    • /
    • 2012
  • Mitogen-activated protein kinase phosphatase 4 (MKP4) has proved to be a promising target for the development of therapeutics for the treatment of diabetes and the other metabolic diseases. Here, we report an example for a successful application of the structure-based virtual screening to identify three novel inhibitors of MKP4. These inhibitors have desirable physicochemical properties as a drug candidate and reveal a moderate potency with $IC_{50}$ values ranging from 4.9 to $32.3{\mu}M$. Therefore, they deserve consideration for further development by structure-activity relationship studies to optimize the inhibitory and antidiabetic activities. Structural features relevant to the stabilization of the newly identified inhibitors in the active site of MKP4 are discussed in detail.

Triptolide Inhibits the Proliferation of Immortalized HT22 Hippocampal Cells Via Persistent Activation of Extracellular Signal-Regulated Kinase-1/2 by Down-Regulating Mitogen-Activated Protein Kinase Phosphatase-1 Expression

  • Koo, Hee-Sang;Kang, Sung-Don;Lee, Ju-Hwan;Kim, Nam-Ho;Chung, Hun-Taeg;Pae, Hyun-Ock
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.4
    • /
    • pp.389-396
    • /
    • 2009
  • Objective : Triptolide (TP) has been reported to suppress the expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), of which main function is to inactivate the extracellular signal-regulated kinase-1/2 (ERK-1/2), the p38 MAPK and the c-Jun N-terminal kinase-1/2 (JNK-1/2), and to exert antiproliferative and pro-apoptotic activities. However, the mechanisms underlying antiproliferative and pro-apoptotic activities of TP are not fully understood. The purpose of this study was to examine whether the down-regulation of MKP-1 expression by TP would account for antiproliferative activity of TP in immortalized HT22 hippocampal cells. Methods : MKP-1 expression and MAPK phosphorylation were analyzed by Western blot. Cell proliferation was assessed by $^3H$-thymidine incorporation. Small interfering RNA (siRNA) against MKP-1, vanadate (a phosphatase inhibitor), U0126 (a specific inhibitor for ERK-1/2), SB203580 (a specific inhibitor for p38 MAPK), and SP600125 (a specific inhibitor for JNK-1/2) were employed to evaluate a possible mechanism of antiproliferative action of TP. Results : At its non-cytotoxic dose, TP suppressed MKP-1 expression, reduced cell growth, and induced persistent ERK-1/2 activation. Similar growth inhibition and ERK-1/2 activation were observed when MKP-1 expression was blocked by MKP-1 siRNA and its activity was inhibited by vanadate. The antiproliferative effects of TP, MKP-1 siRNA, and vanadate were significantly abolished by U0126, but not by SB203580 or SP600125. Conclusion : Our findings suggest that TP inhibits the growth of immortalized HT22 hippocampal cells via persistent ERK-1/2 activation by suppressing MKP-1 expression. Additionally, this study provides evidence supporting that MKP-1 may play an important role in regulation of neuronal cell growth.

Reduction of 2,4,6-Trinitrotoluene Mobility in Operational Range Soil by Sorption Enhancement and Desorption Decrease Using Monopotassium Phosphate and Montmorillonite (제일인산칼륨과 몬트모릴로나이트 점토를 이용한 사격장 토양 내 2,4,6-trinitrotoluene의 흡착증진 및 탈착감소에 의한 이동성 저감 연구)

  • Jung, Jae-Woong;Yu, Gihyeon;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.46-53
    • /
    • 2018
  • Mobility reduction of 2,4,6-trinitrotoluene (TNT) was tested by amending monopotassium phosphate (MKP) and montmorillonite to a firing range soil contaminated with TNT. While addition of MKP enhanced sorption of TNT on soil matrix, and combined use of MKP with montmorillonite significantly decreased desorption of TNT as well as remarkably increased the TNT sorption. Montmorillonite amendment by 5% of soil mass resulted in TNT desorption of 0.12 mg/kg from soil loaded with 9.93 mg/kg-TNT. The decrease of TNT desorption was proportional to the amount of montmorillonite amended. At 10 and 15% amendment, only 0.79 and 1.23 mg/kg-TNT was desorbed from 29.33 and 48.80 mg/kg-TNT. In addition, the leaching of TNT with synthetic precipitation leaching procedure (SPLP) and hydroxypropyl-${\beta}$-cyclodextrin (HPCD) decreased, indicating that TNT in MKP/montmorillonite-treated soil became more stable and less leachable. The results demonstrate that addition of MKP and montmorillonite to TNT-contaminated soil reduces the mobility of TNT from soil not only by increasing TNT sorption, but also decreasing TNT desorption. It was found that MKP and montmorillonite amendments by 5 and 10% of soil mass, respectively, were optimal for reducing the mobility of soil TNT.

Risk Evaluation of Monopotassium Phosphate (MKP) and Bentonite Application via the Mobility Reduction of Soil TNT and Heavy Metals (제일인산칼륨과 벤토나이트 처리를 통한 토양 내 TNT와 중금속 이동성 및 인체위해도 저감 기술)

  • Jung, Jae-Woong;Yu, Gihyeon;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.28-36
    • /
    • 2015
  • Simultaneous mobility reduction of explosives and heavy metals in an operational range by monopotassium phosphate (MKP) and bentonite spreading technology was investigated. Potassium ion and phosphate ion in MKP act as explosives sorption enhancer and insoluble heavy metal phosphate formation, respectively, while bentonite acts as the explosives adsorbent. Then, the decrease in surface water concentration of the pollutants and resulting risk reduction for local residents of the operational range, by MKP/bentonite application was estimated. Under untreated scenario, the noncancer hazard index (HI) exceeded unity on February, July and August, mainly due to 2,4,6-trinitrotoluene (TNT); however, MKP/bentonite treatment was expected to lower the noncancer hazard index by decreasing the surface water concentration of explosives and heavy metals (especially TNT). For example, on July, estimated surface water concentration and HI of TNT were 0.01 mg/L and 1.1, respectively, meanwhile the sorption coefficient of TNT was 3.9 mg1−nkg−1Ln. However, by MKP/bentonite treatment, the TNT sorption coefficient increased to 113.8 mg1−nkg−1Ln and the surface water concentration and HI decreased to about 0.002 mg/L and 0.2, respectively. Based on the result, it can be concluded that MKP/bentonite spreading is a benign technology that can mitigate the risk posed by the pollutants migration from operational ranges.

Specific Binding and Catalytic Activation of the MAPK-MKP Complex

  • Kim, Myeongbin;Ryu, Seong Eon
    • Biodesign
    • /
    • v.6 no.4
    • /
    • pp.79-83
    • /
    • 2018
  • Mitogen-activated protein kinases (MAPKs) are one of the most important enzymes in various cellular activities, and the MAPK signaling pathway is implicated in many disorders. MAPK phosphatases (MKPs) are regulators that contain a MAPK-binding domain (MBD) for MAPK recognition, and a catalytic domain (CD), for dephosphorylation and inactivation of MAPKs. Due to their crucial role in regulating the MAPK pathway, MKPs are regarded as a potential drug target in various diseases. Attempts have also been made to regulate the MAPK pathway by reducing the MKP activity. For drug development, it is important to understand the key features of MAPK-MKP complex formation. This review summarizes the studies on MAPK-MKP complexes, mainly focusing on their selective recognition and catalytic activation.

Regulatory Roles of MAPK Phosphatases in Cancer

  • Heng Boon Low;Yongliang Zhang
    • IMMUNE NETWORK
    • /
    • v.16 no.2
    • /
    • pp.85-98
    • /
    • 2016
  • The mitogen-activated protein kinases (MAPKs) are key regulators of cell growth and survival in physiological and pathological processes. Aberrant MAPK signaling plays a critical role in the development and progression of human cancer, as well as in determining responses to cancer treatment. The MAPK phosphatases (MKPs), also known as dual-specificity phosphatases (DUSPs), are a family of proteins that function as major negative regulators of MAPK activities in mammalian cells. Studies using mice deficient in specific MKPs including MKP1/DUSP1, PAC-1/DUSP2, MKP2/DUSP4, MKP5/DUSP10 and MKP7/DUSP16 demonstrated that these molecules are important not only for both innate and adaptive immune responses, but also for metabolic homeostasis. In addition, the consequences of the gain or loss of function of the MKPs in normal and malignant tissues have highlighted the importance of these phosphatases in the pathogenesis of cancers. The involvement of the MKPs in resistance to cancer therapy has also gained prominence, making the MKPs a potential target for anti-cancer therapy. This review will summarize the current knowledge of the MKPs in cancer development, progression and treatment outcomes.

Glutamine Inhibits TNF-α-induced Cytosolic Phospholipase A2 Activation via Upregulation of MAPK Phosphatase-1

  • Yoon, So Young;Jeong, Soo-Yeon;Im, Suhn-Young
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.223-230
    • /
    • 2021
  • Tumor necrosis factor alpha (TNF-α) is a principal regulator of inflammation and immunity. The proinflammatory properties of TNF-α can be attributed to its ability to activate the enzyme cytosolic phospholipase A2 (cPLA2), which generates potent inflammatory lipid mediators, eicosanoids. L-glutamine (Gln) plays physiologically important roles in various metabolic processes. We have reported that Gln has a potent anti-inflammatory activity via rapid upregulation of mitogen-activated protein kinases (MAPKs) phosphatase (MKP)-1, which preferentially dephosphorylates the key proinflammatory enzymes, p38 MAPK and cytosolic phospholipase A2 (cPLA2). In this study, we have investigated whether Gln could inhibit TNF-α-induced cPLA2 activation. Gln inhibited TNF-α-induced increases in cPLA2 phosphorylation in the lungs and blood levels of the cPLA2 metabolites, leukotrine B4 (LTB4) (lipoxygenase metabolite) and prostaglandin E2 (PGE2) (cyclooxygenase metabolite). TNF-α increased p38 and cPLA2 phosphorylation and blood levels of LTB4 and PGE2, which were blocked by the p38 inhibitor SB202190. Gln inhibited TNF-α-induced p38 and cPLA2 phosphorylation and production of the cPLA2 metabolites. Such inhibitory activity of Gln was no longer observed in MKP-1 small interfering RNA-pretreated animals. Our data indicate that Gln inhibited TNF-α-induced cPLA2 phosphorylation through MKP-1 induction/p38 inhibition, and suggest that the utility of Gln in inflammatory diseases in which TNF-α plays a major role in their pathogenesis.

Effects of Crude Protein Levels in Diets Containing MKP on Water Quality and the Growth of Japanese Eels Anguilla japonica and Leafy Vegetables in a Hybrid BFT-Aquaponic System (일인산칼륨(MKP)이 함유된 사료 내 단백질 수준이 Hybrid BFT 아쿠아포닉스(HBFT-AP)의 뱀장어(Anguilla japonica) 및 엽채류의 생산성과 수질변화에 미치는 영향)

  • Lee, Dong-Hoon;Kim, Jin-Young;Lim, Seong-Ryul;Kim, Kwang-Bae;Kim, Joo-Min;Hariati, Anik M.;Kim, Dong-Woo;Kim, Jeong-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.4
    • /
    • pp.606-619
    • /
    • 2020
  • This study investigated the effects of crude protein levels in diets containing monobasic potassium phosphate (MKP) on water quality and the growth of Japanese eels Anguilla japonica and leafy vegetables in a Hybrid BFT-Aquaponics (HBFT-AP) system. The first experiment (EXP1) was designed to verify the effects of the feed itself on leafy vegetable productivity using two diets (CP48 and CP30) with MKP and one commercial eel diet (COM58). The second experiment (EXP2) examined the effects of the three diets on productivity of the fish and leafy vegetables in the HBFT-AP for 6 weeks. After the 6 week feeding trial, the weight gain, feed efficiency, specific growth rate and protein efficiency ratio of fish fed COM58 and CP48 were higher than those of fish fed CP30 (P<0.05) and the growth of the four leafy vegetables was the highest with fish fed CP48. Water quality was measured six times per week using a portable water quality meter and reagent measurements and showed variance with time for TAN (0.01-0.09 mg/L), NO2-N (0.010-0.064 mg/L), NO3-N (5.52-27.15 mg/L), PO4-P (2.03-5.32 mg/L) and pH (7.86-6.15).

Movement for the Various Coated and Uncoated Potassium(K) Fertilizers in the Turfgrass Soils of Golf Course (골프장의 잔디 토양에서 다양한 코팅 및 비코팅 칼륨(K) 비료의 이동성 평가)

  • Kim, Hong-Ki;Han, Seok-Soon;Kwon, Sang-Moon;Kim, Hee-Jung;Woo, Sun-Hee;Lee, Moon-Soon;Baek, Ki-Tae;Lee, Bong-Gyu;Lee, Sang-Sung;Kim, In-Su;Chung, Keun-Yook
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.133-142
    • /
    • 2009
  • This study was initiated to evaluate the K leaching potential in the green soils and K uptake by the turfgrass in the golf course using the K fertilizers. The turfgrass, Floradwarf bermudagrass(Cynodon dactylon L. $P_{ERS}$.) was planted and grown in the mixture of sand and peat moss in this lysimeter study. Eight representative K fertilizers, such as, monopotassium phosphate (MKP), KCL, $K_2SO_4$, $KNO_3$, CKCl, $CK_2SO_4$, $CKNO_3$, and 0-20-20(liquid) were used in this study. Based on the total K quantity of leachate collected during the whole 12 weeks, 0-20-20 is the K fertilizers the most contributing to the leaching of K, then MKP, the second, KCL, the third, and finally $KNO_3$ are K fertilizers contributing to the K leaching. However, most amount of K applied and collected in the lysimeter were leached during the first period of two and four weeks, compared to that of K leached during the second period of six, eight, ten, and twelve weeks. Application of CKCL and $CK_2SO_4$ producted the largest amount of total dry matter, then MKP and KCL, $KNO_3$ and $CKNO_3$, 0-20-20 in second group. However, except $K_2SO_4$, most K fertilizer sources such as MKP, KCL, $KNO_3$, CKCL, $CK_2SO_4$, $CKNO_3$, 0-20-20 showed the largest amount of K uptake, except $K_2SO_4$. Therefore, based on the K leaching, dry matter production, and plant K uptake, it appears that the coated fertilizers, CKCL, $CKNO_3$, and $CK_2SO_4$ are the environmentally sound fertilizers recommended in the turfgrass green soil of golf course.