• Title/Summary/Keyword: MIT-BIH Arrhythmia Database

Search Result 78, Processing Time 0.023 seconds

A assessment of multiscale-based peak detection algorithm using MIT/BIH Arrhythmia Database (MIT/BIH 부정맥 데이터베이스를 이용한 다중스케일 기반 피크검출 알고리즘의 검증)

  • Park, Hee-Jung;Lee, Young-Jae;Lee, Jae-Ho;Lim, Min-Gyu;Kim, Kyung-Nam;Kang, Seung-Jin;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1441-1447
    • /
    • 2014
  • A robust new algorithm for R wave detection named for Multiscale-based Peak Detection(MSPD) is assessed in this paper using MIT/BIH Arrhythmia Database. MSPD algorithm is based on a matrix composed of local maximum and find R peaks using result of standard deviation in the matrix. Furthermore, By reducing needless procedure of proposed algorithm, improve algorithm ability to detect R peak efficiently. And algorithm performance is assessed according to detection rates about various arrhythmia database.

R Wave Detection and Advanced Arrhythmia Classification Method through QRS Pattern Considering Complexity in Smart Healthcare Environments (스마트 헬스케어 환경에서 복잡도를 고려한 R파 검출 및 QRS 패턴을 통한 향상된 부정맥 분류 방법)

  • Cho, Iksung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 2021
  • With the increased attention about healthcare and management of heart diseases, smart healthcare services and related devices have been actively developed recently. R wave is the largest representative signal among ECG signals. R wave detection is very important because it detects QRS pattern and classifies arrhythmia. Several R wave detection algorithms have been proposed with different features, but the remaining problem is their implementation in low-cost portable platforms for real-time applications. In this paper, we propose R wave detection based on optimal threshold and arrhythmia classification through QRS pattern considering complexity in smart healthcare environments. For this purpose, we detected R wave from noise-free ECG signal through the preprocessing method. Also, we classify premature ventricular contraction arrhythmia in realtime through QRS pattern. The performance of R wave detection and premature ventricular contraction arrhythmia classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30 premature ventricular contraction. The achieved scores indicate the average of 98.72% in R wave detection and the rate of 94.28% in PVC classification.

QRS Complex Detection Algorithm Using M Channel Filter Banks (M 채널 필터 뱅크를 이용한 QRS complex 검출 알고리즘)

  • 김동석;전대근;이경중;윤형로
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.165-174
    • /
    • 2000
  • 본 논문에서는 M 채널 필터 뱅크를 이용하여 심전도 자동 진단 시스템에서 매우 중요한 파라미터로 사용되는 QRS complex 검출을 실시하였다. 제안된 알고리즘에서는 심전도 신호를 M개의 균일한 주파수 대역으로 분할(decomposition)하고, 분할된 서브밴드(subband) 신호들 중에서 QRS complex의 에너지 분포가 가장 많이 존재하는 5∼25Hz 영역의 서브밴드 신호들을 선택하여 feature를 계산함으로써 QRS complex 검출을 실시하였다. 제안된 알고리즘의 성능 비교를 위하여 MIT-BIH arrhythmia database를 사용하였으며, sensitivity는 99.82%, positive predictivity는 99.82, 평균 검출율은 99.67%로 기존의 알고리즘에 비해 높은 검출 성능을 나타내었다. 또한 polyphase representation을 이용하여 M 채널 필터 뱅크를 구현한 결과 연산 시간이 단추되어 실시간 검출이 가능함을 확인하였다.

  • PDF

Arrhythmia Classification using Hybrid Combination Model of CNN-LSTM (합성곱-장단기 기억 신경망의 하이브리드 결합 모델을 이용한 부정맥 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.76-84
    • /
    • 2022
  • Arrhythmia is a condition in which the heart beats abnormally or irregularly, early detection is very important because it can cause dangerous situations such as fainting or sudden cardiac death. However, performance degradation occurs due to personalized differences in ECG signals. In this paper, we propose arrhythmia classification using hybrid combination model of CNN-LSTM. For this purpose, the R wave is detected from noise removed signal and a single bit segment was extracted. It consisted of eight convolutional layers to extract the features of the arrhythmia in detail, used them as the input of the LSTM. The weights were learned through deep learning and the model was evaluated by the verification data. The performance was compared in terms of the accuracy, precision, recall, F1 score through MIT-BIH arrhythmia database. The achieved scores indicate 92.3%, 90.98%, 92.20%, 90.72% in terms of the accuracy, precision, recall, F1 score, respectively.

Arrhythmia Classification using GAN-based Over-Sampling Method and Combination Model of CNN-BLSTM (GAN 오버샘플링 기법과 CNN-BLSTM 결합 모델을 이용한 부정맥 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1490-1499
    • /
    • 2022
  • Arrhythmia is a condition in which the heart has an irregular rhythm or abnormal heart rate, early diagnosis and management is very important because it can cause stroke, cardiac arrest, or even death. In this paper, we propose arrhythmia classification using hybrid combination model of CNN-BLSTM. For this purpose, the QRS features are detected from noise removed signal through pre-processing and a single bit segment was extracted. In this case, the GAN oversampling technique is applied to solve the data imbalance problem. It consisted of CNN layers to extract the patterns of the arrhythmia precisely, used them as the input of the BLSTM. The weights were learned through deep learning and the learning model was evaluated by the validation data. To evaluate the performance of the proposed method, classification accuracy, precision, recall, and F1-score were compared by using the MIT-BIH arrhythmia database. The achieved scores indicate 99.30%, 98.70%, 97.50%, 98.06% in terms of the accuracy, precision, recall, F1 score, respectively.

Arrhythmia Detection Using Rhythm Features of ECG Signal (심전도 신호의 리듬 특징을 이용한 부정맥 검출)

  • Kim, Sung-Oan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.8
    • /
    • pp.131-139
    • /
    • 2013
  • In this paper, we look into previous research in relation to each processing step for ECG diagnosis and propose detection and classification method of arrhythmia using rhythm features of ECG signal. Rhythm features for distribution of rhythm and heartbeat such as identity, regularity, etc. are extracted in feature extraction, and rhythm type is classified using rule-base constructed in advance for features of rhythm section in rhythm classification. Experimental results for all of rhythm types in the MIT-BIH arrhythmia database show detection performance of 100% for arrhythmia with only normal rhythm rule and applicability of classification for rhythm types with arrhythmia rhythm rules.

Patient Adaptive Pattern Matching Method for Premature Ventricular Contraction(PVC) Classification (조기심실수축(PVC) 분류를 위한 환자 적응형 패턴 매칭 기법)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.2021-2030
    • /
    • 2012
  • Premature ventricular contraction(PVC) is the most common disease among arrhythmia and it may cause serious situations such as ventricular fibrillation and ventricular tachycardia. Particularly, in the healthcare system that must continuously monitor patient's situation, it is necessary to process ECG (Electrocardiography) signal in realtime. In other words, the design of algorithm that exactly detects R wave using minimal computation and classifies PVC by analyzing the persons's physical condition and/or environment is needed. Thus, the patient adaptive pattern matching algorithm for the classification of PVC is presented in this paper. For this purpose, we detected R wave through the preprocessing method, adaptive threshold and window. Also, we applied pattern matching method to classify each patient's normal cardiac behavior through the Hash function. The performance of R wave detection and abnormal beat classification is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.33% in R wave detection and the rate of 0.32% in abnormal beat classification error.

Classification of ECG arrhythmia using Discrete Cosine Transform, Discrete Wavelet Transform and Neural Network (DCT, DWT와 신경망을 이용한 심전도 부정맥 분류)

  • Yoon, Seok-Joo;Kim, Gwang-Jun;Jang, Chang-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.727-732
    • /
    • 2012
  • This paper presents an approach to classify normal and arrhythmia from the MIT-BIH Arrhythmia Database using Discrete Cosine Transform(DCT), Discrete Wavelet Transform(DWT) and neural network. In the first step, Discrete Cosine Transform is used to obtain the representative 15 coefficients for input features of neural network. In the second step, Discrete Wavelet Transform are used to extract maximum value, minimum value, mean value, variance, and standard deviation of detail coefficients. Neural network classifies normal and arrhythmia beats using 55 numbers of input features, and then the accuracy rate is 98.8%.

An SPC-Based Forward-Backward Algorithm for Arrhythmic Beat Detection and Classification

  • Jiang, Bernard C.;Yang, Wen-Hung;Yang, Chi-Yu
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.4
    • /
    • pp.380-388
    • /
    • 2013
  • Large variation in electrocardiogram (ECG) waveforms continues to present challenges in defining R-wave locations in ECG signals. This research presents a procedure to extract the R-wave locations by forward-backward (FB) algorithm and classify the arrhythmic beat conditions by using RR intervals. The FB algorithm shows forward and backward searching rules from QRS onset and eliminates lower-amplitude signals near the baseline using a statistical process control concept. The proposed algorithm was trained the optimal parameters by using MIT-BIH arrhythmia database (MITDB), and it was verified by actual Holter ECG signals from a local hospital. The signals are classified into normal (N) and three arrhythmia beat types including premature ventricular contraction (PVC), ventricular flutter/fibrillation (VF), and second-degree heart block (BII) beat. This work produces 98.54% accuracy in the detection of R-wave location; 98.68% for N beats; 91.17% for PVC beats; and 87.2% for VF beats in the collected Holter ECG signals, and the results are better than what are reported in literature.

A Study on the Detection of the Ventricular Fibrillation based on Wavelet Transform and Artificial Neural Network (웨이브렛과 신경망 기반의 심실 세동 검출 알고리즘에 관한 연구)

  • Song Mi-Hye;Park Ho-Dong;Lee Kyoung-Joung;Park Kwang-Li
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.780-785
    • /
    • 2004
  • In this paper, we proposed a ventricular fibrillation detection algorithm based on wavelet transform and artificial neural network. we selected RR intervals, the 6th and 7th wavelet coefficients(D6, D7) as features for classifying ventricular fibrillation. To evaluate the performance of the proposed algorithm, we compared the result of the proposed algorithm with that of fuzzy inference and fuzzy-neural network. MIT-BIH Arrhythmia database, Creighton University Ventricular Tachyarrhythmia database and MIH-BIH Malignant Ventricular Arrhythmia database were used as test and learning data. Among the algorithms, the proposed algorithm showed that the classification rate of normal and abnormal beat was sensitivity(%) of 96.10 and predictive positive value(%) of 99.07, and that of ventricular fibrillation was sensitivity(%) of 99.45. Finally. the proposed algorithm showed good performance compared to two other methods.