• Title/Summary/Keyword: MIROC3.2

Search Result 28, Processing Time 0.034 seconds

GCMs Evaluation Focused on Korean Climate Reproducibility (우리나라 기후 재현성을 중심으로 한 GCMs 평가)

  • Choi, Daegyu;Lee, Jinhee;Jo, Deok Jun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.482-490
    • /
    • 2010
  • In this study 17 GCMs' simulations of late 20th century climate in Korea are examined. A regionally averaged time series formed by averaging the temperature and precipitation values at all the Korean grid points. In order to compare general circulation models with observations, observed spatially averaged temperature and precipitation is calculated using 24 stations for 1971 to 2000. The annual mean difference between models and observed data are compared. For temperature, most models have a slight cold bias. The models with least bias in annual average temperature are NIES(MIROC3.2 hires), GISS(AOM) and INGV(SXG2005). For precipitation, almost all models have a dry bias, and for some the bias exceeds 50%. Models with lowest bias are NIES(MIROC3.2 hires), CCCma(CGCM3-T47) and MPI-M(ECHAM5-OM). The models' simulated seasonal cycles show that for temperature, CSIRO(Mk3.0) has the best followed by CCCma(CGCM3-T47) and CCCma(CGCM3-T63), and for precipitation, NIES(MIROC3.2 hires) has the best followed by CSIRO(Mk3.0) and CNRM(CM3). In the assessment using Taylor diagram, CCCma(CGCM3-T47) ranks the best for temperature, and NIES(MIROC3.2 hires) ranks the best for precipitation.

Projection of Forest Vegetation Change by Applying Future Climate Change Scenario MIROC3.2 A1B (미래 기후변화 시나리오 MIROC3.2 A1B에 따른 우리나라 산림식생분포의 변화 전망)

  • Shin, Hyung-Jin;Park, Geun-Ae;Park, Min-Ji;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.64-75
    • /
    • 2012
  • To predict the future distribution of forest vegetation, the present forest stand distributions of South Korea were represented by multinomial logit model with the following environmental variables: summer average precipitation, the coldest month average temperature, elevation, degree of base saturation, and soil organic matter. The future forest community was predicted by applying the MIROC3.2 hires A1B scenario. The future climate data were downscaled by statistically method. The coldest month average temperature increased $4.4^{\circ}C$, $6.0^{\circ}C$, and $9.4^{\circ}C$, and 3 months average precipitation changed -1.2%, 5.7%, and 5.3% for 2020s, 2050s, and 2080s respectively. For the projected summer precipitation and the coldest temperature, the future deciduous and mixed forests in the study area increased 56.9% and 8.3% and the coniferous forest decreased 11.2% in 2080s based on present.

Projection and Analysis of Future Temperature and Precipitation using LARS-WG Downscaling Technique - For 8 Meteorological Stations of South Korea - (LARS-WG 상세화 기법을 적용한 미래 기온 및 강수량 전망 및 분석 - 우리나라 8개 기상관측소를 대상으로 -)

  • Shin, Hyung-Jin;Park, Min-Ji;Joh, Hyung-Kyung;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.4
    • /
    • pp.83-91
    • /
    • 2010
  • Generally, the GCM (General Circulation Model) data by IPCC climate change scenarios are used for future weather prediction. IPCC GCM models predict well for the continental scale, but is not good for the regional scale. This paper tried to generate future temperature and precipitation of 8 scattered meteorological stations in South Korea by using the MIROC3.2 hires GCM data and applying LARS-WG downscaling method. The MIROC3.2 A1B scenario data were adopted because it has the similar pattern comparing with the observed data (1977-2006) among the scenarios. The results showed that both the future precipitation and temperature increased. The 2080s annual temperature increased $3.8{\sim}5.0^{\circ}C$. Especially the future temperature increased up to $4.5{\sim}7.8^{\circ}C$ in winter period (December-February). The future annual precipitation of 2020s, 2050s, and 2080s increased 17.5 %, 27.5 %, and 39.0 % respectively. From the trend analysis for the future projected results, the above middle region of South Korea showed a statistical significance for winter precipitation and south region for summer rainfall.

Assessing Future Climate Change Impact on Hydrologic Components of Gyeongancheon Watershed (기후변화가 경안천 유역의 수문요소에 미치는 영향 평가)

  • Ahn, So-Ra;Park, Min-Ji;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.33-50
    • /
    • 2009
  • The impact on hydrologic components considering future potential climate, land use change and vegetation cover information was assessed using SLURP (Semi-distributed Land-Use Runoff Process) continuous hydrologic model. The model was calibrated (1999 - 2000) and validated (2001 - 2002) for the upstream watershed ($260.4\;km^2$) of Gyeongancheon water level gauging station with the coefficient of determination and Nash-Sutcliffe efficiency ranging from 0.77 to 0.60 and 0.79 to 0.60, respectively. Two GCMs (MIROC3.2hires, ECHAM5-OM) future weather data of high (A2), middle (A1B) and low (B1) emission scenarios of the IPCC (Intergovernmental Panel on Climate Change) were adopted and the data was corrected by 20C3M (20th Century Climate Coupled Model) and downscaled by Change Factor (CF) method using 30 years (1977 - 2006, baseline period) weather data. Three periods data of 2010 - 2039 (2020s), 2040 - 2069 (2050s), 2070 - 2099 (2080s) were prepared. To reduce the uncertainty of land surface conditions, future land use and vegetation canopy prediction were tried by CA-Markov technique and NOAA NDVI-Temperature relationship respectively. MIROC3.2 hires and ECHAM5-OM showed increase tendency in annual streamflow up to 21.4 % for 2080 A1B and 8.9 % for 2050 A1B scenario respectively. The portion of future predicted ET about precipitation increased up to 3 % in MIROC3.2 hires and 16 % in ECHAM5-OM respectively. The future soil moisture content slightly increased compared to 2002 soil moisture.

Prediction of the Spawning Ground of Todarodes pacificus under IPCC Climate A1B Scenario (IPCC 기후변화 시나리오(A1B)에 따른 살오징어(Todarodes pacificus) 산란장의 변동 예측)

  • Kim, Jung-Jin;Min, Hong-Sik;Kim, Cheol-Ho;Yoon, Jin-Hee;Kim, Su-Am
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.253-264
    • /
    • 2012
  • In the northwestern Pacific, spawning of the common squid, Todarodes pacificus, occurs at continental shelf and slope areas of 100-500 m, and the optimum temperature for the spawning and survival of paralarvae is assumed to be $18-23^{\circ}C$. To predict the spawning ground of Todarodes pacificus under future climate conditions, we simulated the present and future ocean circulations, using an East Asia regional ocean model (Modular Ocean Model, MOM version3), projected by two different global climate models (MPI_echam5, MIROC_hires), under an IPCC SRES A1B emission scenario. Mean climate states for 1990-1999 and 2030-2039 from 20th and 21th Century Climate Change model simulation (from the IPCC 4th Assessment Report) were used as surface conditions for simulations, and we examined changes in spawning ground between the 1990s and 2030s. The results revealed that the distribution of spawning ground in the 2030s in both climate models shifted northward in the East China Sea and East Sea, for both autumn and winter populations, compared to that of the 1990s. Also, the spawning area (with $1/6^{\circ}{\times}1/6^{\circ}$ grid) in the 2030s of the autumn and winter populations will decline by 11.6% (MPI_echam5) to 30.8% (MIROC_hires) and 3.0% (MPI_echam5) to 18.2% (MIROC_hires), respectively, from those of the 1990s.

Assessment of Future Climate Change Impact on Soil Water Storage in Watershed by using SWAT Model (SWAT 모형을 이용한 미래 기후변화에 따른 유역 토양수분 영향평가)

  • Jung, Hyuk;Park, Jong-Yoon;Ha, Rim;Park, Hye-Sun;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.83-83
    • /
    • 2012
  • 본 연구에서는 SWAT(Soil and Water Assessment Tool) 모형을 이용하여 토양수분과 유출량을 이용한 미래 기후변화에 따른 유역수문에 미치는 영향평가를 실시하였다. 미래 기후변화 영향평가는 용담댐 유역 ($930km^2$)을 대상으로 수행하였다. 모형의 검보정은 유출 3개 지점(용담, 동향, 천천)에서 2004~2008년으로, 토양수분 5개 지점(장수, 안천, 천천, 계북, 부귀)에서 2004~2008년으로 실시하였다. 모형의 적합성과 상관성을 판단하기 위하여 Nash-Sutcliffe 모형효율을 사용하였다. 미래 기후변화 시나리오는 IPCC (Intergovermental Panel on Climate Change)에서 제공하는 SRES (Special Report on Emission Scenarios) A1B, B1 기후변화 시나리오의 MIROC3.2 hires 모델의 결과 값을 이용하였다. 유역 규모의 기후자료 생성을 위해 추계학적 일 기상자료 생성 모형인 LARS-WG (Long Ashton Research Station - Weather Generator)를 사용하여 2040s (2020~2059년)와 2080s (2060~2099년) 기간에 대하여 강수와, 최고온도, 최저온도에 대하여 상세화하였다. 추후 토양수분의 변화를 통한 수문 영향 평가와 미래 기후변화 시나리오에 따른 수문 거동을 알아 볼 수 있을 것이다.

  • PDF

Assessment of Climate Change Impacts from a Multi-purpose Dam Watershed Using SWAT Model (SWAT모형을 이용한 기후변화가 다목적 댐 유역에 미치는 영향 평가)

  • Ha, Rim;Jeong, Hyeon-Gyo;Park, Jong-Yoon;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.421-421
    • /
    • 2012
  • 본 연구의 목적은 SWAT (Soil and Water Assessment Tool) 모형을 이용하여 기후변화가 다목적 댐 유역의 방류량에 미치는 영향을 분석하는 것으로, 연구 대상 유역은 북동부 산악지역에 위치한 충주댐 및 충주조정지댐을 유역 출구로 하는 다목적댐유역(충주댐 유역: $8360km^2$)이다. 모형유역의 32개 AWS와 10개 기상관측소의 강우 및 기상자료를 입력 하였으며, 모형의 검보정을 위해 댐 상 하류 4개 지점(영월1, 영월2, 충주댐, 충주조정지댐) 수위, 방류량 측정자료를 이용하였다. 미래 기후변화가 댐유역에 미치는 영향 분석을 위하여 IPCC (Intergovermental Panel on Climate Change)에서 제공하는 SRES (Special Report on Emission Scenarios) MIROC3.2 hires 모델 AIB와 B1 시나리오를 사용하였으며, LARS-WG (Long Ashton Research Station Weather Generator)를 사용하여 유역 규모의 기후자료를 상세화 하였다. 모형의 결과를 토대로 미래 2040s(2020년-2059년)와 2080s(2060년-2099년)의 환경유지유량을 추정하고, 미래 댐 유입량과 수위 관리의 시계열 변화를 예측하여 관리방안을 제시하고자 한다.

  • PDF

Modeling the Effect of a Climate Extreme on Maize Production in the USA and Its Related Effects on Food Security in the Developing World (미국 Corn Belt 폭염이 개발도상국의 식량안보에 미치는 영향 평가)

  • Chung, Uran
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2014.10a
    • /
    • pp.1-24
    • /
    • 2014
  • This study uses geo-spatial crop modeling to quantify the biophysical impact of weather extremes. More specifically, the study analyzes the weather extreme which affected maize production in the USA in 2012; it also estimates the effect of a similar weather extreme in 2050, using future climate scenarios. The secondary impact of the weather extreme on food security in the developing world is also assessed using trend analysis. Many studies have reported on the significant reduction in maize production in the USA due to the extreme weather event (combined heat wave and drought) that occurred in 2012. However, most of these studies focused on yield and did not assess the potential effect of weather extremes on food prices and security. The overall goal of this study was to use geo-spatial crop modeling and trend analysis to quantify the impact of weather extremes on both yield and, followed food security in the developing world. We used historical weather data for severe extreme events that have occurred in the USA. The data were obtained from the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA). In addition we used five climate scenarios: the baseline climate which is typical of the late 20th century (2000s) and four future climate scenarios which involve a combination of two emission scenarios (A1B and B1) and two global circulation models (CSIRO-Mk3.0 and MIROC 3.2). DSSAT 4.5 was combined with GRASS GIS for geo-spatial crop modeling. Simulated maize grain yield across all affected regions in the USA indicates that average grain yield across the USA Corn Belt would decrease by 29% when the weather extremes occur using the baseline climate. If the weather extreme were to occur under the A1B emission scenario in the 2050s, average grain yields would decrease by 38% and 57%, under the CSIRO-Mk3.0 and MIROC 3.2 global climate models, respectively. The weather extremes that occurred in the USA in 2012 resulted in a sharp increase in the world maize price. In addition, it likely played a role in the reduction in world maize consumption and trade in 2012/13, compared to 2011/12. The most vulnerable countries to the weather extremes are poor countries with high maize import dependency ratios including those countries in the Caribbean, northern Africa and western Asia. Other vulnerable countries include low-income countries with low import dependency ratios but which cannot afford highly-priced maize. The study also highlighted the pathways through which a weather extreme would affect food security, were it to occur in 2050 under climate change. Some of the policies which could help vulnerable countries counter the negative effects of weather extremes consist of social protection and safety net programs. Medium- to long-term adaptation strategies include increasing world food reserves to a level where they can be used to cover the production losses brought by weather extremes.

  • PDF

Assessment of Future Climate Change Impact on Soil Erosion Loss of Metropolitan Area Using Ministry of Environment Land Use Information (환경부 토지이용정보를 이용한 수도권의 미래 기후변화에 따른 토양유실 예측 및 평가)

  • Ha, Rim;Joh, Hyungkyung;Kim, Seongjoon
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.89-98
    • /
    • 2014
  • This study is to evaluate the future potential impact of climate change on soil erosion loss in a metropolitan area using Revised Universal Soil Loss Equation(RUSLE) with land use information of the Ministry of Environment and rainfall data for present and future years(30-year period). The spatial distribution map of vulnerable areas to soil erosion was prepared to provide the basis information for soil conservation and long-term land use planning. For the future climate change scenario, the MIROC3.2 HiRes A1B($CO_2720ppm$ level 2100) was downscaled for 2040-2069(2040s) and 2070-2099(2080s) using the stochastic weather generator(LARS-WG) with average rainfall data during past 30 years(1980-2010, baseline period). By applying the climate prediction to the RUSLE, the soil erosion loss was evaluated. From the results, the soil erosion loss showed a general tendency to increase with rainfall intensity. The soil loss increased up to 13.7%(55.7 ton/ha/yr) in the 2040s and 29.8%(63.6 ton/ha/yr) in the 2080s based on the baseline data(49.0 ton/ha/yr).

  • PDF

Climate Change in Corn Fields of the Coastal Region of Ecuador

  • Borja, Nicolas;Cho, Jaepil;Choi, KyungSook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.271-271
    • /
    • 2015
  • The Ecuadorian coast has two different climate regions. One is humid region where the annual rainfall is above 2000 mm and rain falls in almost all months of the year, and the other is dry region where the annual rainfall can fall below 50 mm and rainfall can be very seasonal. The agriculture is frequently limited by the seasons during the year and the availability of rainfall amounts. The corn fields in Ecuador are cultivated during the rainy season, due to this reason. The weather conditions for optimum development of corn growth require a monthly average rainfall of 120 mm to 140 mm and a temperature range of $22^{\circ}C{\sim}32^{\circ}C$ for the dry region, and a monthly average rainfall of 200 mm to 400 mm and a temperature range of $25^{\circ}C{\sim}30^{\circ}C$ for the humid area. The objective of this study is to predict how the weather conditions are going to change in corn fields of the coastal region of Ecuador in the future decades. For this purpose, this study selected six General Circulation Models (GCM) including BCC-CSM1-1, IPSL-CM5A-MR, MIROC5, MIROC-ESM, MIROC-ESM-CHEM, MRIC-CGC3 with different climate scenarios of the RCP 4.5, RCP 6.0, and RCP 8.5, and applied for the period from 2011 to 2100. The climate variables information was obtained from the INAMHI (National Institute of Meteorology and Hydrology) in Ecuador for the a base line period from 1986 to 2012. The results indicates that two regions would experience significant changes in rainfall and temperature compared to the historical data. In the case of temperature, an increment of $1^{\circ}C{\sim}1.2^{\circ}C$ in 2025s, $1.6^{\circ}C{\sim}2.2^{\circ}C$ in 2055s, $2.1^{\circ}C{\sim}3.5^{\circ}C$ in 2085s were obtained from the dry region while less increment were shown from the humid region with having an increment of $1^{\circ}C$ in 2025s, $1.4^{\circ}C{\sim}1.8^{\circ}C$ in 2055s, $1.9^{\circ}C{\sim}3.2^{\circ}C$ in 2085s. Significant changes in rainfall are also projected. The rainfall projections showed an increment of 8%~11% in 2025s, 21%~33% in 2055s, and 34%~70% in 2085s for the dry region, and an increment of 2%~10%, 14%~30% and 23%~57% in 2025s, 2055s and 2085s decade respectively for humid region.

  • PDF