• Title/Summary/Keyword: MINERALIZATION

Search Result 1,006, Processing Time 0.021 seconds

Some Problems on the Concept of Mineral Paragenesis and Macrostructures of Ore Veins, with special reference to those of Ore Veins at the Ohtani Mine, Kyoto Prefecture, Japan (광물공생(鑛物共生)의 개념(槪念)에 대(對)한 문제점(問題點)과 광맥광상(鑛脈鑛床)의 macrostructure -특(特)히 일본(日本) 대고광산(大谷鑛山)의 광맥광상(鑛脈鑛床)에 대(對)한 macrostructure-)

  • Kim, Moon Young;Nakamura, Takeshi
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.97-102
    • /
    • 1986
  • Concepts on mineral association, mineral paragenesis, and mineralization stage relating to macrostructures of vein filling in ore veins are briefly discussed. As an example of plutonic ore vein, macrostructures of vein filling of plutonic tungsten-tin-copper vein at the Ohtani mine, Kyoto Prefecture, Japan, one of representatives of plutonic tungsten-tin vein related genetically to acidic magmatism of late Cretaceous in the Inner zone of Southwest Japan, are examined. Based on macrostructures of vein filling, three major mineralization stages, are distinguished by major tectonic breaks. Sequence of mineralization, characteristic features of each mineralization stage, and variations of filling temperature and salinity ranges of fluid inclusions in minerals from stage I to stage III are summarized.

  • PDF

Geochemistry of Uranium and Thorium Deposits from the Kyemyeongsan Pegmatite (계명산층 페그마타이트에 수반되는 우라늄·토륨 광상의 지구화학적 특성)

  • Park, Maeng-Eon;Kim, Gun-Soo
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.365-374
    • /
    • 1998
  • Economic U- and Th-bearing pegmatite deposits occur in the Kyemyeongsan Formation, and are spatially closely associated with the Carboniferous alkali granite. The pegmatite is lithochemically alkaline and peralumious, and consists mainly of potassic feldspar and quartz with allanite and U- and Th-bearing minerals. Paragenetic stages of mineralization in the pegmatite are divided as follows: early silicate mineralization, main rare metal mineralization, and late silicate mineralization. Thorite, euxenite, fergusonite and uranpyrochlore are the predominant U- and Th-bearing minerals. Both the enrichments of Nb, Y, Th, U, and Ta and the depletions of Hf, Ba, and Rb in the pegmatite were resulted from magmatic differentiation. The increases of Na and Ca in uranpyrochlore, of Th and U in fergusonite, of Si, Th, U and Pb in thorite, and of Nb and Y in euxenite were possibly resulted from both later internal fractionation and hydrothermal alteration. The variation of chemical composition in a mineral species reflects the different pysico-chemical conditions during the crystallization.

  • PDF

Ginsenoside Rh2(S) induces the differentiation and mineralization of osteoblastic MC3T3-E1 cells through activation of PKD and p38 MAPK pathways

  • Kim, Do-Yeon;Jung, Mi-Song;Park, Young-Guk;Yuan, Hai Dan;Quan, Hai Yan;Chung, Sung-Hyun
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.659-664
    • /
    • 2011
  • As part of the search for biologically active anti-osteoporotic agents that enhance differentiation and mineralization of osteoblastic MC3T3-E1 cells, we identified the ginsenoside Rh2(S), which is an active component in ginseng. Rh2(S) stimulates osteoblastic differentiation and mineralization, as manifested by the up-regulation of differentiation markers (alkaline phosphatase and osteogenic genes) and Alizarin Red staining, respectively. Rh2(S) activates p38 mitogen-activated protein kinase (MAPK) in time- and concentration-dependent manners, and Rh2(S)-induced differentiation and mineralization of osteoblastic cells were totally inhibited in the presence of the p38 MAPK inhibitor, SB203580. In addition, pretreatment with Go6976, a protein kinase D (PKD) inhibitor, significantly reversed the Rh2(S)-induced p38 MAPK activation, indicating that PKD might be an upstream kinase for p38 MAPK in MC3T3-E1 cells. Taken together, these results suggest that Rh2(S) induces the differentiation and mineralization of MC3T3-E1 cells through activation of PKD/p38 MAPK signaling pathways, and these findings provide a molecular basis for the osteogenic effect of Rh2(S).

Longitudinal Alterations on Lumbar Vertebral Trabecular Bone Qualities during Pregnancy (임신기간 중 척추 해면골의 골질(bone qualities) 변화)

  • Ko, Chang-Yong;NamGung, Bum-Seok;Kim, Hyo-Seon;Kim, Hyun-Dong;Kim, Han-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.95-101
    • /
    • 2010
  • The aim of this study was to detect longitudinal alterations on lumbar vertebral trabecular bone quality (microarchitecture and degree of mineralization) and bone mineral density (BMD) during pregnancy Virginal eighteen mice were used. Then, twelve mice were mated. Mice lumbar vertebrae were scanned before mate, at 7 days of pregnancy (early pregnancy, 6 mice) and immediately after delivery (late pregnancy, 6 mice) by using in-vivo micro-computed tomography Structural parameters, degree of mineralization and BMD were measured. During early pregnancy, there were no significant alterations on structural parameters, degree of mineralization and BMD. At late pregnancy, Tb.Th (11.8%) and BMD (12.7%) were significantly decreased and Tb.N (6.3%), Tb.Pf (43.0%) and BS/BV (15.1%) were significantly increased (p<0.05). Additionally, the lower degree of mineralization was increased, although, the higher degree of mineralization was decreased. These results indicated that the quality and BMD might be not affected during early pregnancy. At late pregnancy, however the bone quality and BMD were likely to be negatively affected.

Longitudinal Alterations of Microarchitecture and Mineralization Distribution on Trabecular Bone Due to Metastatic Bone Tumor (전이성 골암에 의한 해면골의 미세구조와 골화 분포 변화)

  • Park, Sun-Wook;Jeon, Ok-Hee;Ko, Chang-Yong;Kim, Chi-Hyun;Kim, Han-Sung;Chun, Keyoung-Jin;Lim, Do-Hyung
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.5
    • /
    • pp.444-451
    • /
    • 2009
  • Purpose: The aim of present study is to detect longitudinal alterations of mechanical characteristic determined by bone quality (microarchitecture and degree of mineralization) on femur trabecular bone due to metastatic bone tumor Materials and Methods: Each 6 female SD rats (12 weeks old, approximate 250g) were allocated in SHAM and TUMOR Group. W256 (Walker carcinosarcoma 256 malignant breast cancer cell) was injected into the right femur (intraosseous injection) in TUMOR Group, whereas 0.9% NaCl (saline solution) was injected in SHAM Group. The right hind limbs of all rats were scanned by in-vivo micro-CT to acquire structural parameters, bone mineral density, X-ray attenuation and bone mineralization distribution at 0 week and 4 weeks after surgery. Results: BMD, BV/TV and Tb.N of trabecular bone in TUMOR group were markedly decreased (26%, 11% and 23%) while those in SHAM group were significantly increased (34%, 48% and 11%) (p<0.05). BS/BV, Tb.Sp and SMI in TUMOR group were significantly increased (-16%, 38% and 2%) compared with those in SHAM group (-33%, 12% and -16%) (p<0.05). Additionally, bone mineralization in TUMOR group significantly decreased while those in SHAM group was significantly increased (p<0.05). Conclusion: It is identified that how much bone microarchitecture and mineralization are diminished due to the metastatic bone tumor. The results may be helpful to prediction of fracture risk by metastatic bone tumor.

Concentration Dependent Effect of Heavy Metals on Soil Carbon Mineralization

  • Walpola, Buddhi Charana;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.551-554
    • /
    • 2012
  • The present laboratory investigation was conducted to assess the effect of heavy metals on carbon mineralization. Soil was treated with three concentrations (50, 100 and $150{\mu}mol\;g^{-1}$ soil) of two heavy metals (Cd and Zn) in a factorial combination of treatments replicated four times. Determination of carbon mineralization was carried out at 3, 7, 14, 21, 28, 42 and 56 days after metal treatments.. The amount of $CO_2$-C released from heavy metal treated soils was found to be decreased at an increasing rate during the first 28 days, followed by slow release as incubation progressed. The total amounts of $CO_2$-C released were 448, 382 and $348mg\;kg^{-1}$ soil respectively for soils treated with 50, 100 and $150{\mu}mol\;g^{-1}$ soil of Zn. The corresponding figures for Cd treated soils were 406, 354 and $282mg\;kg^{-1}$ soil implying that dose-dependent reduction in cumulative $CO_2$-C released from soils. The inhibition of carbon mineralization was found to be high in Cd treated soils than that of Zn treated. Therefore, tolerance and adaptation of the microbial community is likely to be related to the concentration and the type of metal. According to the results, carbon mineralization can be considered as possible indicator of soil pollution by means of heavy metals.

Epithermal Gold-Silver Mineralization and Depositional Environment of Carbonate-hosted Replacement Type Baegjeon Deposits, Korea (탄산염암 층준교대형 백전광상의 천열수 금-은 광화작용과 생성환경)

  • Lee, Chan Hee;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.29 no.2
    • /
    • pp.105-117
    • /
    • 1996
  • The Baegjeon Au-Ag and Sb deposits, small of disseminated-type gold deposits are formed as a result of epithermal processes associated a shallow-seated Cretaceous Yeogdun granitoids intrusion. The orebodies are formed by the replacement of carbonate minerals in thin-bedded oolitic limestone beds favorable for mineralization within the upper-most Cambrian Pungchon Limestone Formation. The mineralization can be recognized one stage, ore minerals composed of base metal sulfides, electrum, AgSb-S, Ag-Cu-S, and Sb-S minerals. Gold-bearing minerals consist of electrum and submicroscopic invisible gold in pyrite and arsenopyrite. The composition of electrums ranges from 33.58 to 63.48 atomic % Ag. Fluid inclusion studies reveal that ore fluids were low saline $NaCl-CO_2-H_2O$ system. Temporary fluid mixing and boiling occured in later stage. Fluid inclusion data indicates the homogenization temperatures and salinities of NaCl eqivalent wt% were 176 to $246^{\circ}C$ and from 0.0 to 4.8 wt%, respectively. And $-logfs_2$, of mineralization obtained by thermodynamic considerations as 12.4 to 13.8 atm. The ${\delta}^{34}S_{H_2S}$, values of hydrothermal sulfides were calculated to be 6.8 to 10.2‰ which was of sedimentary origin. The ${\delta}^{18}O_{H_2O}$ and ${\delta}^{13}C_{CO_2}$, range from -3.9 to 9.6‰, from -1.1 to -2.2‰, and ${\delta}D$ range from -89 to -118‰, respectively. The Au deposition during mineralization seems to have occurred as a result of decrease of temperature, $fs_2$, $fo_2$, and pH probably due to oxidation by meteoric water mixing, which destabilized original $Au(HS)^-{_2}$. The mineralization of the Baegjeon deposits is similar to the Carlin-type deposits characterized by sediments-hosted epithermal bedding replacement disseminated gold deposits.

  • PDF

Gene expression pattern during osteogenic differentiation of human periodontal ligament cells in vitro

  • Choi, Mi-Hye;Noh, Woo-Chang;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.4
    • /
    • pp.167-175
    • /
    • 2011
  • Purpose: Periodontal ligament (PDL) cell differentiation into osteoblasts is important in bone formation. Bone formation is a complex biological process and involves several tightly regulated gene expression patterns of bone-related proteins. The expression patterns of bone related proteins are regulated in a temporal manner both in vivo and in vitro. The aim of this study was to observe the gene expression profile in PDL cell proliferation, differentiation, and mineralization in vitro. Methods: PDL cells were grown until confluence, which were then designated as day 0, and nodule formation was induced by the addition of 50 ${\mu}g$/mL ascorbic acid, 10 mM ${\beta}$-glycerophosphate, and 100 nM dexamethasone to the medium. The dishes were stained with Alizarin Red S on days 1, 7, 14, and 21. Real-time polymerase chain reaction was performed for the detection of various genes on days 0, 1, 7, 14, and 21. Results: On day 0 with a confluent monolayer, in the active proliferative stage, c-myc gene expression was observed at its maximal level. On day 7 with a multilayer, alkaline phosphatase, bone morphogenetic protein (BMP)-2, and BMP-4 gene expression had increased and this was followed by maximal expression of osteocalcin on day 14 with the initiation of nodule mineralization. In relationship to apoptosis, c-fos gene expression peaked on day 21 and was characterized by the post-mineralization stage. Here, various genes were regulated in a temporal manner during PDL fibroblast proliferation, extracellular matrix maturation, and mineralization. The gene expression pattern was similar. Conclusions: We can speculate that the gene expression pattern occurs during PDL cell proliferation, differentiation, and mineralization. On the basis of these results, it might be possible to understand the various factors that influence PDL cell proliferation, extracellular matrix maturation, and mineralization with regard to gene expression patterns.

The effects of dexamethasone on the apoptosis and osteogenic differentiation of human periodontal ligament cells

  • Kim, Sung-Mi;Kim, Yong-Gun;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.4
    • /
    • pp.168-176
    • /
    • 2013
  • Purpose: The purpose of the current study was to examine the effect of dexamethasone (Dex) at various concentrations on the apoptosis and mineralization of human periodontal ligament (hPDL) cells. Methods: hPDL cells were obtained from the mid-third of premolars extracted for orthodontic reasons, and a primary culture of hPDL cells was prepared using an explant technique. Groups of cells were divided according to the concentration of Dex (0, 1, 10, 100, and 1,000 nM). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed for evaluation of cellular viability, and alkaline phosphatase activity was examined for osteogenic differentiation of hPDL cells. Alizarin Red S staining was performed for observation of mineralization, and real-time polymerase chain reaction was performed for the evaluation of related genes. Results: Increasing the Dex concentration was found to reduce cellular viability, with an increase in alkaline phosphatase activity and mineralization. Within the range of Dex concentrations tested in this study, 100 nM of Dex was found to promote the most vigorous differentiation and mineralization of hPDL cells. Dex-induced osteogenic differentiation and mineralization was accompanied by an increase in the level of osteogenic and apoptosis-related genes and a reduction in the level of antiapoptotic genes. The decrease in hPDL cellular viability by glucocorticoid may be explained in part by the increased prevalence of cell apoptosis, as demonstrated by BAX expression and decreased expression of the antiapoptotic gene, Bcl-2. Conclusions: An increase in hPDL cell differentiation rather than cellular viability at an early stage is likely to be a key factor in glucocorticoid induced mineralization. In addition, apoptosis might play an important role in Dex-induced tissue regeneration; however, further study is needed for investigation of the precise mechanism.