• 제목/요약/키워드: MIMO technology

Search Result 356, Processing Time 0.024 seconds

Power based scheduling for Collaborative MIMO system (Collaborative MIMO 시스템을 위한 전력기반 스케줄링 방식)

  • Kim, Young-Joon;Lee, Jung-Seung;Baik, Doo-Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1209-1216
    • /
    • 2008
  • In order to maximize spectrum efficiency and data rate MIMO(Multiple Input Multiple Output) is adopted to wireless system. OFDM-based WiMAX and LTE accommodate MIMO as mandatory technology. STC(Space Time Coding) and SM(Spatial Multiplexing) are used in downlink while in uplink C-MIMO(Collaborative MIMO) is used to improve data throughput. In this paper conventional pairing schemes, RPS(Random Pairing Scheduling) and DPS(Determinant Pairing Scheduling) are analyzed. From the analysis the performance of DPS algorithm is better than that of RPS because DPS measures orthogonal factor between paired users. However, there are potential problems such as hardware complexity and performance. To overcome the issues Power-Based Scheduling(PBS) algorithm is proposed for C-MIMO. PBS can provide higher performance compared to RPS and dramatically reduce hardware complexity compared to DPS

Additional degree of freedom in phased-MIMO radar signal design using space-time codes

  • Vahdani, Roholah;Bizaki, Hossein Khaleghi;Joshaghani, Mohsen Fallah
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.640-649
    • /
    • 2021
  • In this paper, an additional degree of freedom in phased multi-input multi-output (phased-MIMO) radar with any arbitrary desired covariance matrix is proposed using space-time codes. By using the proposed method, any desired transmit covariance matrix in MIMO radar (phased-MIMO radars) can be realized by employing fully correlated base waveforms such as phased-array radars and simply extending them to different time slots with predesigned phases and amplitudes. In the proposed method, the transmit covariance matrix depends on the base waveform and space-time codes. For simplicity, a base waveform can be selected arbitrarily (ie, all base waveforms can be fully correlated, similar to phased-array radars). Therefore, any desired covariance matrix can be achieved by using a very simple phased-array structure and space-time code in the transmitter. The main advantage of the proposed scheme is that it does not require diverse uncorrelated waveforms. This considerably reduces transmitter hardware and software complexity and cost. One the receiver side, multiple signals can be analyzed jointly in the time and space domains to improve the signal-to-interference-plus-noise ratio.

On Antenna Orientation for Inter-Cell Interference Coordination in Cellular Network MIMO Systems

  • Sheu, Jeng-Shin;Lyu, Shin-Hong;Huang, Chuan-Yuan
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.639-648
    • /
    • 2016
  • Next-generation (4G) systems are designed to support universal frequency reuse (UFR) to achieve best use of valuable spectra. However, it leads to undesirable interference level near cell borders. To control this, 4G systems adopt techniques, such as network multiple-input multiple-output (MIMO) and inter-cell interference coordination (ICIC), to improve cell-edge throughput. Network MIMO aims at mitigating inter-cell interference towards cell-edge users (CEUs) through multi-cell cooperation, where each collaborative base station serves both cell-center users (CCUs) and CEUs, including other cells' CEUs, under a power constraint. The present ICIC strategies cannot be directly applied to network MIMO because they were designed in absence of multi-cell coordination. In the presence of network MIMO, this paper investigates antenna orientations in ICIC and the method of power management. Results show that a proper antenna orientation can improve the cell-edge capacity and meantime lower the interference to CCUs. Capacity inconsistency between CCUs and CEUs is detrimental to mobile communications. Simulation results show that the proposed power management for ICIC in network MIMO systems can achieve a uniform data rate regardless users' position.

Detection Techniques for High Dimensional Spatial Multiplexing MIMO System (다차원 공간다중화 MIMO 시스템의 복조 기법)

  • Lim, Sung-Ho;Kim, Kyungsoo;Choi, Ji-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.7
    • /
    • pp.413-423
    • /
    • 2014
  • With the increasing demands on high data rate, there has been growing interests in multi-input multi-output (MIMO) technology based on spatial multiplexing (SM) since it can transmit independent information in each spatial stream. Recent standards such as 3GPP LTE-advanced and IEEE 802.11ac support up to eight spatial streams, and massive MIMO and mm-wave systems that are expected to be included in beyond 4G systems are considering employment of tens to hundreds of antennas. Since the complexity of the optimum maximum likelihood based detection method increases exponentially with the number of antennas, low-complexity SM MIMO detection becomes more critical as the number of antenna increases. In this paper, we first review the results on the detection schemes for SM MIMO systems. In addition, massive MIMO reception schemes based on simple linear filtering which does not require exponential increment of complexity will be explained, followed by brief description on receiver design for future high dimensional SM MIMO systems.

Adaptive Opimization of MIMO Codebook to Channel Conditions for Split Linear Array (분할된 선형배열안테나를 위한 채널 환경에 적응하는 MIMO 코드북 최적화)

  • Mun, Cheol;Jung, Chang-Kyoo;Kwak, Yun-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.736-741
    • /
    • 2009
  • In this paper, adaptive optimizations of precoder codebook to channel conditions is proposed for a multiuser multiple-input multiple-output (MIMO) system with split linear array and limited feedback. We propose adaptive method for constructing a precoder codebook by coloring the random vector quantization codebook at each link by using limited long-term feedback information on transmit correlation matrix of each link. It is shown that the proposed multiuser MIMO codebook design scheme outperforms existing multiuser MIMO codebook design schemes for various channel conditions in terms of the average sum throughput of multiuser MIMO systems using zero-forcing maximum eigenmode transmission and limited feedback.

  • PDF

Performance Analysis and Design of MIMO Systems for Terrestrial Transmission of UHDTV (UHDTV를 위한 MIMO 전송 시스템 성능 분석 및 설계)

  • Jo, Bong-Gyun;Han, Dong-Seog
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.547-554
    • /
    • 2010
  • In this paper, we propose transmission systems for ultra high definition television (UHDTV) through terrestrial transmission by applying the multi-input multi-output (MIMO) technology. The space time block code, hybrid STBC, V-BLAST and linear dis- persion code are considered to support a high data rate of the UHDTV system. The performance of proposed MIMO systems are evaluated through computer simulations. Then we suggest MIMO parameters, number of antennas and optimal transmission scheme to achieve the transmission rate of the UHDTV system.

Open-Loop Precoding for Spatial Multiplexing Systems in Correlated Channels (상관 채널에서의 공간다중화 기법을 위한 개루프 프리코딩 기법)

  • Jang, Jungyup;Kim, Dong Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.58-60
    • /
    • 2015
  • In this letter, an open-loop precoding is proposed to enhance the performance of SM in transmit correlated MIMO channels. The proposed method is derived by observing the effect of feedback error on the minimum distance precoder, and can mitigate the performance degradation without any feedback information.

The Trend of Mobile Communication MIMO Channel Modeling Technology (이동통신 MIMO 채널 모델링 기술 동향)

  • Kim, Won-Seop;Park, Jae-Jun;Lee, Jun-Hwan;Kim, Myeong-Don;Jeong, Hyeon-Gyu
    • Electronics and Telecommunications Trends
    • /
    • v.23 no.3
    • /
    • pp.53-60
    • /
    • 2008
  • 이동통신 MIMO 채널 모델이란 다중안테나를 사용한 무선 인터페이스 구간 내의 신호처리 모델로서, 무선 통신의 급격한 수요와 이동통신 서비스의 폭발적인 증가로 인해 차세대 이동통신 시스템 개발의 최적화를 위하여 MIMO 시스템 개발의 구현기술 검증에 사용된다. 차세대 이동통신 시스템의 사용 주파수 대역은 2-6GHz 대역으로 예상되며 기존 2G/3G 이동통신 대역폭 보다 큰 10-100MHz의 광대역 무선전송을 목표로 하고 있다. 본 고에서는 이동통신 MIMO 채널 모델링의 개발 및 표준화 동향에 대해서 논의한다. II장에서는 MIMO 채널 모델의 국.내외 개발 동향에 대해서 서술하며, III장에서는 MIMO 채널 모델링을 위한 국제표준화 동향에 대해서 서술한다. 마지막으로 IV장에서 결론을 맺고자 한다.

Novel User Selection Algorithm for MU-MIMO Downlink System with Block Diagonalization (Block Diagonalization을 사용하는 하향링크 시스템에서의 MU-MIMO 사용자 스케쥴링 기법)

  • Kim, Kyunghoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.3
    • /
    • pp.77-85
    • /
    • 2018
  • Multi-User Multiple-Input Multiple-Output (MU-MIMO) is the core technology for improving the channel capacity compared to Single-User MIMO (SU-MIMO) by using multiuser gain and spatial diversity. Key problem for the MU-MIMO is the user selection which is the grouping the users optimally. To solve this problem, we adopt Extreme Value Theory (EVT) at the beginning of the proposed algorithm, which defines a primary user set instead of a single user that has maximum channel power according to a predetermined threshold. Each user in the primary set is then paired with all of the users in the system to define user groups. By comparing these user groups, the group that produces a maximum sum rate can be determined. Through computer simulations, we have found that the proposed method outperforms the conventional technique yielding a sum rate that is 0.81 bps/Hz higher when the transmit signal to noise ratio (SNR) is 30 dB and the total number of users is 100.

Derivation of Closed Form Channel Capacity Using Confluent Hypergeometric Function for Wireless MIMO (Wireless MIMO를 위한 Confluent Hypergeometric Function를 이용한 Closed Form Channel Capacity의 유도)

  • Kabir, S.M.Humayun;Pham, Van-Su;Mai, Linh;Yoon, Gi-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.1082-1086
    • /
    • 2008
  • Multiple-input multiple-output (MIMO) is an efficient technology to increase data rate in wireless networks due to bandwidth and power limitations. Data transmission rate between transmitter and receiver is determined by channel capacity. MIMO has an advantage of reliable communication over wireless channel because of utilizing the channel capacity properly. In this letter, we drive a new formula, closed form capacity formula, using confluent hypergeometric function.