• 제목/요약/키워드: MIMO plant

검색결과 36건 처리시간 0.023초

Robust Controller Implementation in DCS for a MIMO Paper-making Process with Long Transport

  • Lee, B. K.;K. Y. Lim
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.64.6-64
    • /
    • 2002
  • This paper presents a procedure of implementing a robust controller for a paper-making plant in DCSs. A paper-making process generally has triple problems to automatically tune its output qualities : Long transport delays which are not able to be simply linearized. The transfer matrix of the process is not square. And every plant model has some uncertainty in low and middle frequency region. To tackle these problems, a multi-input / multi-output (MIMO) plant model having some uncertainty was derived by considering some physical and mechanical principles of the process. Then a MIMO robust \ulcornercontroller is designed and implemented in a real DCS as function block type. Som...

  • PDF

폐로식별기법에 의한 TRMS 모델링 (Modeling for Twin Rotor System Using CLID)

  • 이정경;권오규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.644-646
    • /
    • 2004
  • The closed loop identification(CLID) is a very useful method for on-line applications since it can identify the plant in the closed-loop system composed of the plant and the controller. There are some literatures on CLID, but they and mainly focused on SISO(Single-Input/Single-Output) problem. In this paper, a CLID method is proposed for MIMO(Multi-Input/Multi-Output) systems. The CLID method is applied to a MIMO benchmark plant, TRMS(Twin-Rotor MIMO System). To illustrate the performance of the closed-loop system identification., unit step responses in the TRMS are represented and compared with the open-loop identification via some simulation.

  • PDF

Robust Controller Implementation in DCS for a MIMO Paper-making Process with long transport delays

  • Kang, Ki-Ho;Lee, Bong-Kuk;Lim, Kye-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.70.3-70
    • /
    • 2002
  • This paper presents a procedure of implementing a robust controller for a paper-making plant in DCSs. A paper-making process generally has triple problems to automatically tune its output qualities . Long transport delays which are not able to be simply linearized. The transfer matrix of the process is not square. And every plant model has some uncertainty in low and middle frequency region. To tackle these problems, a multi-input / multi-output (MIMO) plant model having some uncertainty was derived by considering some physical and mechanical principles of the process. Then a MIMO robust-controller is designed and implemented in a real DCS as function block type. Some special co...

  • PDF

Temperature Control of Ultrasupercritical Once-through Boiler-turbine System Using Multi-input Multi-output Dynamic Matrix Control

  • Moon, Un-Chul;Kim, Woo-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.423-430
    • /
    • 2011
  • Multi-input multi-output (MIMO) dynamic matrix control (DMC) technique is applied to control steam temperatures in a large-scale ultrasupercritical once-through boiler-turbine system. Specifically, four output variables (i.e., outlet temperatures of platen superheater, finish superheater, primary reheater, and finish reheater) are controlled using four input variables (i.e., two spray valves, bypass valve, and damper). The step-response matrix for the MIMO DMC is constructed using the four input and the four output variables. Online optimization is performed for the MIMO DMC using the model predictive control technique. The MIMO DMC controller is implemented in a full-scope power plant simulator with satisfactory performance.

MIMO Takagi-Sugeno 퍼지 모델을 위한 모델참조 적응 퍼지 제어기의 설계 (A model reference adaptive fuzzy control for MIMO Takagi-Sugeno fuzzy model)

  • 조영완
    • 한국지능시스템학회논문지
    • /
    • 제17권1호
    • /
    • pp.130-135
    • /
    • 2007
  • In this paper, a direct model reference adaptive fuzzy control (MRAFC) scheme is developed for the plant model whose structure is represented by the MIMO Takagi-Sugeno fuzzy model. The MRAFC scheme is proposed to provide asymptotic tracking of a reference signal lot the systems with uncertain or slowly time-varying parameters. The developed control law and adaptive law guarantee that all signals in the closed-loop system are bounded. In addition, the plant state tracks the state of the reference model asymptotically with time tot any bounded reference input signal.

A Robust Observer Design for Nonlinear MIMO Plants using Time-Delayed Signals

  • Lee, Jeong-Wan;Chang, Pyung-Hun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.22-31
    • /
    • 1999
  • In this paper, a robust observer design method for nonlinear multi input multi-output(MINO) plants is presented. This method enables the extension of the time delay observer (TDO) for nonlinear SISO plants in the phase variable form to MIMO plants. The designed TDO reconstructs the states of the plant expressed in the generalized observability canonical form (GOBCF), yet requiring neither the transformation of a plant, nor the real time computation coordinates, the observer turned out to be computationally efficient and easy to design for nonlinear MIMO plants. In a simulation of a two-link manipulator with flexible joints, the control performances using TDO appeared to be similar to those using actual states and superior to those using numerical differentiation. Finally, in an experiment with a robot, it was confirmed that the TDO reconstructs the states reliability and TDO can be effectively used in a real closed-loop system.

  • PDF

3축 유압 도로 시뮬레이터의 정량적 피드백 제어 시스템 설계 (Design of Quantitative Feedback Control System for the Three Axes Hydraulic Road Simulator)

  • 김진완;현동길;김영배
    • 대한기계학회논문집A
    • /
    • 제32권3호
    • /
    • pp.280-289
    • /
    • 2008
  • This paper presents design of the quantitative feedback control system of the three axes hydraulic road simulator with respect to the dummy wheel for uncertain multiple input-output(MIMO) feedback systems. This simulator has the uncertain parameters such as fluid compressibility, fluid leakage, electrical servo components and nonlinear mechanical connections. This works have reproduced the random input signal to implement the real road vibration's data in the lab. The replaced $m^2$ MISO equivalent control systems satisfied the design specifications of the original $m^*m$ MIMO control system and developed the mathematical method using quantitative feedback theory based on schauder's fixed point theorem. This control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) having the minimum bandwidth for parameters of uncertain plant. The efficacy of the designed controller is verified through the dynamic simulation with combined hydraulic model and Adams simulator model. The Matlab simulation results to connect with Adams simulator model show that the proposed control technique works well under uncertain hydraulic plant system. The designed control system has satisfied robust performance with stability bounds, tracking bounds and disturbance. The Hydraulic road simulator consists of the specimen, hydraulic pump, servo valve, hydraulic actuator and its control equipments

Feedback-Based Iterative Learning Control for MIMO LTI Systems

  • Doh, Tae-Yong;Ryoo, Jung-Rae
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권2호
    • /
    • pp.269-277
    • /
    • 2008
  • This paper proposes a necessary and sufficient condition of convergence in the $L_2$-norm sense for a feedback-based iterative learning control (ILC) system including a multi-input multi-output (MIMO) linear time-invariant (LTI) plant. It is shown that the convergence conditions for a nominal plant and an uncertain plant are equal to the nominal performance condition and the robust performance condition in the feedback control theory, respectively. Moreover, no additional effort is required to design an iterative learning controller because the performance weighting matrix is used as an iterative learning controller. By proving that the least upper bound of the $L_2$-norm of the remaining tracking error is less than that of the initial tracking error, this paper shows that the iterative learning controller combined with the feedback controller is more effective to reduce the tracking error than only the feedback controller. The validity of the proposed method is verified through computer simulations.

Simultaneous Control of Frequency Fluctuation and Battery SOC in a Smart Grid using LFC and EV Controllers based on Optimal MIMO-MPC

  • Pahasa, Jonglak;Ngamroo, Issarachai
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.601-611
    • /
    • 2017
  • This paper proposes a simultaneous control of frequency deviation and electric vehicles (EVs) battery state of charge (SOC) using load frequency control (LFC) and EV controllers. In order to provide both frequency stabilization and SOC schedule near optimal performance within the whole operating regions, a multiple-input multiple-output model predictive control (MIMO-MPC) is employed for the coordination of LFC and EV controllers. The MIMO-MPC is an effective model-based prediction which calculates future control signals by an optimization of quadratic programming based on the plant model, past manipulate, measured disturbance, and control signals. By optimizing the input and output weights of the MIMO-MPC using particle swarm optimization (PSO), the optimal MIMO-MPC for simultaneous control of the LFC and EVs, is able to stabilize the frequency fluctuation and maintain the desired battery SOC at the certain time, effectively. Simulation study in a two-area interconnected power system with wind farms shows the effectiveness of the proposed MIMO-MPC over the proportional integral (PI) controller and the decentralized vehicle to grid control (DVC) controller.

Output feedback-based model reference adaptive control for MIMO plants

  • Takahashi, Masanori;Mizumoto, Ikuro;Iwai, Zenta
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.181-184
    • /
    • 1996
  • This paper deals with the design problem of model reference adaptive controllers for MIMO plants with unknown orders. A design scheme for an adaptive control system based on CGT theorem, which has hierarchical structures derived from backstepping strategies, is proposed for MIMO plants with unknown orders but with known relative MacMillan degrees(relative degrees for SISO plants). It is also shown that all the signals in the resulting control system are bounded, and that the asymptotic tracking is achieved in the case where reference inputs are step.

  • PDF