• Title/Summary/Keyword: MIMO Antennas

Search Result 385, Processing Time 0.046 seconds

Survey on MIMO Full-Duplex (MIMO Full-Duplex 기술 동향)

  • Yang, Hyun Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1286-1292
    • /
    • 2015
  • In this paper, a multi-input multi-output (MIMO) full-duplex system is addressed, where both the transmitter and receiver have multiple antennas. Fundamental problems of the MIMO full-duplex technique are discussed, and possible solutions are presented. In particular, the transceiver designs that have been reported in the literature are technically reviewed, and their problems are discussed investigating the feasibility of the full-duplex technique in commercialized systems such as LTE and WiFi.

Evolution of MIMO Technology (MIMO 기술의 진화)

  • Shim, Byonghyo;Lee, Byungju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.712-723
    • /
    • 2013
  • Recent exploration of smart-phone user is fueling the deployment of long term evolution (LTE) service that offers higher data rates service over 3G HSPA networks. In particular, Korea, mobile powerhouse, recently launched the service of LTE-Advanced (LTE-A) which is the latest release in LTE standard. Multiple-input-multiple-output (MIMO) technology is the one of key enablers for LTE and LTE-A for achieving high data rate. MIMO technology has received much attention since it is possible to achieve channel capacity in proportion to the number of antennas without increasing frequency and power. In this paper, we overview of the theoretical background of MIMO technology regarding from single-user MIMO, multiuser MIMO, and massive MIMO and design considerations to implement the communication system.

Study on MMSE Interpolation Schemes Using Multiple Symbols (다중 심볼을 이용한 MMSE 보간 기법에 대한 연구)

  • Jo, Jun-Ho;Choi, Seyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6478-6483
    • /
    • 2013
  • This paper presents the idea of interpolating between multiple sounding bursts to estimate the individual channels of a MIMO scenario. The performance of the proposed technique depends on the $f_dT$ product and the number of transmit and receive antennas. In particular, this technique can be effective if the $f_dT$ product is not too high and the number of antennas is not too large. Furthermore, there is a considerable difference in the performance of the 16 channels in the $4{\times}4$ MIMO case because the sounding bursts spread farther apart with time, meaning that the Doppler in the channel causes a greater error for the channels.

Capacity Characteristics of the Indoor Propagation Channel for MIMO System at 5 GHz (5GHz 대역 MIMO 시스템에 대한 실내 전파 채널용량 특성)

  • Ryu, Seong-Hyun;Kim, Jung-Ha;Kwon, Se-Woong;Yoon, Young-Joong
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.43-46
    • /
    • 2003
  • This paper presents capacity characteristics of the indoor LOS(Line-Of-Sight) propagation channel for MIMO system at 5GHz. The distance between antenna elements, their moving path, and number of transmitting and receiving antennas can be determined by wanted eigen-vlaue, and channel capacity of the MIMO communication channel using only reliable simulation without measurements. The simulation uses 3D Ray tracing and patch scattering model to which electromagnetic material constants are applied. As distance between antenna elements increases, distribution of the eigen-value show a tendency to decrease, but channel capacity increases in LOS environment. However, despite of short distance between antenna elements, large value of channel capacity is obtained in positions which have high AS. When the position of receiver antennas are shifted, channel capacity hardly changed, and as number of antenna elements increases, channel capacity also increases regularly.

  • PDF

A Codebook Generation and Search Scheme for FDD Downlink Massive MIMO Systems (주파수 분할 하향링크 거대 다중 안테나 시스템을 위한 코드북 형성 및 검색 기법)

  • Choi, Il-Gyu;Nho, Hoon-Dong;Lee, Chung-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.704-711
    • /
    • 2013
  • Applying channel state information feedback scheme based on codebook for FDD downlink MIMO system to massive MIMO system directly causes following two problems. First, codebook generation becomes hard because resources needed for codebook generation increases exponentially in the number of antennas. In addition, long time is needed for channel state information feedback because users's codebook search time increases linearly in the number of antennas. This paper proposes a codebook generation scheme and a codebook search scheme which can reduce resource for codebook generation and codebook search time drastically though they have similar performance as conventional approaches.

Co-located and space-shared multiple-input multiple-output antenna module and its applications in 12 × 12 multiple-input multiple-output systems

  • Longyue Qu;Haiyan Piao;Guohui Dong
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.203-212
    • /
    • 2023
  • In this study, we developed a co-located and space-shared multiple-input multiple-output (MIMO) antenna module with a modular design and high integration level. The proposed antenna pair includes a half-wavelength loop antenna and a dipole-type antenna printed on the front and back sides of a compact modular board. Owing to their modal orthogonality, these two independent antenna elements are highly self-isolated and free of additional decoupling components, even though they are assembled at the same location and within the same space. Thus, the proposed antenna is attractive in 5G MIMO systems. Furthermore, the proposed co-located and space-shared MIMO antenna module was employed in a 5G smartphone to verify their radiation and diversity performances. A 12 × 12 MIMO antenna system was simulated and fabricated using the proposed module. Based on the results, the proposed module can be employed in large-scale MIMO antenna systems for current and future terminal devices owing to its high integration, compactness, simple implementation, and inherent isolation.

Design of a Compact MIMO Antenna for Smart Glasses (스마트 안경용 초소형 MIMO 안테나 설계)

  • Choi, Sehwan;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.351-354
    • /
    • 2017
  • In this paper, a compact MIMO(Multiple Input Multiple Output) antenna for smart glasses is proposed. The proposed MIMO antenna is designed using T-shaped isolator inserted between two closely located Inverted-F Antenna(IFA) and using two slots located in the ground for isolation enhancement and impedance matching characteristic. The proposed antenna has only the overall dimensions of $35mm{\times}9mm{\times}0.8mm$ and operates in the 2.4 GHz industrial, scientific, and medical(ISM) band. To verify human body effect, the phantom is used for antenna performance. The measured specific absorption rate(SAR) value is 1.38 W/kg with an input power of 18 dBm. The performance of the proposed antenna is compared with that of previous works for verification.

Secret Key-Dimensional Distribution Mechanism Using Deep Learning to Minimize IoT Communication Noise Based on MIMO (MIMO 기반의 IoT 통신 잡음을 최소화하기 위해서 딥러닝을 활용한 비밀키 차원 분배 메커니즘)

  • Cho, Sung-Nam;Jeong, Yoon-Su
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.11
    • /
    • pp.23-29
    • /
    • 2020
  • As IoT devices increase exponentially, minimizing MIMO interference and increasing transmission capacity for sending and receiving IoT information through multiple antennas remain the biggest issues. In this paper, secret key-level distribution mechanism using deep learning is proposed to minimize MIMO-based IoT communication noise. The proposed mechanism minimizes resource loss during transmission and reception process by dispersing IoT information sent and received through multiple antennas in batches using deep learning. In addition, the proposed mechanism applied a multidimensional key distribution processing process to maximize capacity through multiple antenna multiple stream transmission at base stations without direct interference between the APs. In addition, the proposed mechanism synchronizes IoT information by deep learning the frequency of use of secret keys according to the number of IoT information by applying the method of distributing secret keys in dimension according to the number of frequency channels of IoT information in order to make the most of the multiple antenna technology.

Performance Evaluation of a Cellular OFDM System with Heterogeneous MIMO Users (이질적인 MIMO 사용자들을 가진 셀룰러 OFDM 시스템의 성능 분석)

  • Oh Joon;Hwang Hyeon chyeol;Lim Jong kyoung;Kim Duk kyung;Kwak Kyung sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.296-303
    • /
    • 2005
  • In this paper, we evaluate system performance and propose signal separation and detection when a user with one antenna shares the co-channel together with a user with two space-time coded antennas. The proposed technique can identify co-channel users by an interference cancellation method and detect the signals by maximum likelihood method. Simulation results show that the shortcoming of the Minimum Mean-Squared Error technique which can be applied two users with the same number of antenna but can not applied for heterogeneous MIMO users with the different number of antennas. Also, we apply the proposed scheme to OFDM system and evaluate the system performance. By simulations, we identify that the performance of the proposed system is the same as that of the existing single antenna users and improves the performance of the two-antenna MIMO users.

Design and Implementation of V-BLAST for MIMO-OFDM Systems (MIMO-OFDM 시스템을 위한 V-BLAST의 설계 및 구현)

  • Choi Yong-Woo;Park In-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.415-418
    • /
    • 2004
  • This paper describes a VLSI implementation of BLAST detection for MIMO-OFDM systems. To achieve high speed requirement, we propose the fully pipeline architecture for BLAST structure. This design is implemented using $0.18{\mu}m$ CMOS technology. For a 4-transmit and 4-receive antennas system, it takes $7.5{\mu}s$ to calculate nulling vector and detection order from 48 channel matrixes.

  • PDF