• Title/Summary/Keyword: MIM Mold

Search Result 11, Processing Time 0.025 seconds

Development of Discharge Electrode for Machining Connector Mold applying MIM Process (MIM 공법 적용 커넥터 금형 가공용 방전 전극 개발)

  • Shin, Kwang-Ho;Jeon, Yong-Jun;Heo, Young-Moo
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.37-40
    • /
    • 2014
  • A discharge electrode plays a role of shaving off workpiece with spark generated by current in discharge machining. Accordingly, for the discharge electrode, an electrode with excellent wear resistance is necessary. Generally, Graphite and Cu are used as the materials of the electrode, and recently Cu-W is mainly used as an electrode with excellent wear resistance. However, the form of the electrode generally used is produced mostly using cutting work, so a lot of costs incur if several similar forms are needed. Thus, this study developed a Cu-W electrode using Metal Injection Molding (MIM) process to produce similar forms with excellent productivity and a great quantity of electrodes in a similar form in discharge machining and carried out a discharge machining test. In developing an electrode applying MIM, predicting contraction of a product in a sintering process, a mold expansion ratio of 1.29486 was given, but the actual product showed a percentage of contraction 24% to 32%, which showed a difference of 3% to 5%. In addition, to verify wear resistance of the discharge electrode, abrasion loss was measured after the discharge.

  • PDF

An Experimental Study on Rheological Characteristics of Metal Injection Molding by Feedstock Material (Feedstock 종류에 따른 금속분말사출성형 유동특성 분석을 위한 실험적 연구)

  • Jung, W.C.;Heo, Y.M.;Shin, K.H.;Yoon, G.S.;Chang, S.H.;Lee, J.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.57-61
    • /
    • 2009
  • In recently industry, with the miniaturization and high-precision of machine part, the development of mold manufacturing technology for mass production is accompanied by the development of new industrial field such as IT, NT and BT. The metal injection molding(MIM) process combines the well-known thermoplastic injection and powder metallurgy technologies to manufacture small parts for IT, NT, BT industrial. In this study, the bar type MIM mold with a 800um thickness is made for influence of feedstock material and injection parameter through an experiment.

  • PDF

Innovations in Micro Metal Injection Molding Process by Lost Form Technology

  • Nishiyabu, Kazuaki;Kanoko, Yasuhiro;Tanaka, Shigeo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.43-44
    • /
    • 2006
  • The production method of micro sacrificial plastic mold insert metal injection molding, namely ${\mu}-SPiMIM$ process has been proposed to solve specific problems involving the miniaturization of MIM. Two types of sacrificial plastic molds (SP-mold) with fine structures were used: 1) PMMA resist, 2) PMMA mold injected into Ni-electroform, which is a typical LIGA (${\underline{L}}ithographie-{\underline{G}}alvanoformung-{\underline{A}}bformung$) process. Stainless steel 316L feedstock was injection-molded into the SP-molds with multi-pillar structures. This study focused on the effects of metal particle size and processing conditions on the shrinkage, transcription and surface roughness of sintered parts.

  • PDF

The Influence of Powder Size on Mechanical Properties of Small MIM Parts

  • Yasui, Noriyuki;Satomi, Hiroshi;Fujiwara, Hiroshi;Ameyama, Kei;Kankawa, Yoshimitsu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.39-40
    • /
    • 2006
  • The relationship between the powder particle size change and a mechanical property of the Metal Injection Molding (MIM) product was examined in detail. The XRD results indicate that the diffraction peaks of BCC appeared in compacts of powder particle size of 4 to $10{\mu}m$ as well as the bulk SUS630. However, the diffraction peaks from both BCC and FCC were observed in the compact with powder size less than $3{\mu}m$. TEM observation revealed that the powder with those BCC/FCC two phase structure have a finely dispersed $SiO_2$ precipitates. Because the Si is ferrite stabilizing element, decrease of Si composition in the matrix phase by the $SiO_2$ precipitation resulted in formation of the retained austenite. Therefore, controlling the elements such as Si as well as oxygen decrease is very important to obtain a normal microstructure in ultra-fine powder $(<3{\mu}m)$ injection molding.

  • PDF

Micro Structure Fabrication Using Injection Molding Method (인젝션 몰딩 기술을 이용한 마이크로 구조물 성형)

  • Je T. J.;Shin B. S.;Chung S. W.;Cho J. W.;Park S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.253-259
    • /
    • 2002
  • Micro cell structures with high aspect ratio were fabricated by injection molding method. The mold inserts had dimension $1.9cm\times8.3cm$ composed of a lot of micro posts and were fabricated by LIGA process. The size of the micro posts was $157{\mu}m\times157{\mu}m\times500{\mu}m$ and the gaps between two adjacent posts were $50{\mu}m$. Using Polymethylmethacrylate (PMMA) injection molding was performed. The key experimental variables were temperature, pressure, and time. By controlling these, good shaped mim cell structures with $50{\mu}m$ in wall thickness and $500{\mu}m$ in depth were obtained. In order to understand micro molding mechanism, shape changes of molded PMMA were studied with experimental variables. And the durability of mold insert was investigated, too. The results show that the most important factor in molding processes was the mold temperature that is closely related to the filling of the melt into the micro cavity. And the holding time before cooling showed a great effect on the quality of molded PMMA.

  • PDF

Fabrication of Refractive/Diffractive Micro-Optical Elements Using Micro-Compression Molding (마이크로 압축성형 공정을 이용한 굴절/회절용 마이크로 광부품 성형)

  • Moon S.;Ahn S.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.200-203
    • /
    • 2001
  • Micromolding methods such as micro-injection molding and micro-compression molding are most suitable for mass production of plastic micro-optics with low cost. In this study, plastic micro-optical components, such as refractive microlenses and diffractive optical elements(DOEs) with various grating patterns, were fabricated using micro-compression molding process. The mold inserts were made by ultrapricision mechanical machining and silicon etching. A micro compression molding system was designed and developed. Polymer powders were used as molded materials. Various defects found during molding were analyzed and the process was optimized experimentally by controlling the governing process parameters such as histories of mold temperature and compression pressure. Mim lenses of hemispherical shape with $250{\mu}m$ diameter were fabricated. The blazed and 4 stepped DOEs with $24{\mu}m$ pitch and $5{\mu}m$ depth were also fabricated. Optical and geometrical properties of plastic molded parts were tested by interferometric technique.

  • PDF

Interaction Factors and Response Surface Analysis on the Factors Influencing the Flow Front Temperature at Metal Injection Mold (금속사출 유동선단온도에 영향을 미치는 주요 인자들의 상호관계 및 반응표면분석)

  • Kim, Myoung-Ho;Yoon, Hi-Seak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.248-255
    • /
    • 2013
  • The objective of this study is to optimize the Metal Injection Molding(MIM) process with design of experiments(DOE) and numerical analysis. To derive the optimal process condition, experiment or numerical analysis was performed under various process conditions. To analyze the interaction among influential factors contributing to the temperature at flow front and response surface in MIM, both central point and axial point were added to the full factorial design with 2 levels and 5 factors and then their impacts on response variable in 43 experimental conditions were analyzed and the significance was evaluated. As a result, sprue, runner, and gate were completely filled in about 0.247 seconds after injection, the front part of the green body was filled in about 0.3344 seconds, the green body except gate, etc changed to almost solid state in about 3.29 seconds, the Packinging pressure was completed in about 6.29 seconds, and the green body inside and outside and sprue, etc became solid in 13.2 seconds. The impact of individual or reciprocal action of factors on the temperature at flow front was analyzed through regular probability, test statistics, main effect, and interaction effect. As a result, of a total of 31 combinations of factors, 9 unit factors and reciprocal actions were significant, and the screening was also possible. A proper regression equation was drawn with regression analysis and response surface design on the response variable of temperature at flow front, and the applicability could be verified.

Micro Metal Powder Injection Molding in the W-Cu System (W-Cu의 마이크로 금속분말사출성형)

  • 김순욱;양주환;박순섭;김영도;문인형
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.267-272
    • /
    • 2002
  • The production of micro components is one of the leading technologies in the fields of information and communiation, medical and biotechnology, and micro sensor and micro actuator system. Microfabrication (micromachining) techniques such as X-ray lithography, electroforming, micromolding and excimer laser ablation are used for the production of micro components out of silicon, polymer and a limited number of pure metals or binary alloys. However, since the first development of microfabrication technologies there have been demands for the cost-effective replication in large scale series as well as the extended range of available material. One such promising process is micro powder injection molding (PIM), which inherits the advantages of the conventional PIM technology, such as low production cost, shape complexity, applicability to many materials, applicability to many materials, and good tolerance. This paper reports on a fundamental investigation of the application of W-Cu powder to micro metal injection molding (MIM), especially in view of achieving a good filling and a safe removal of a micro mold conducted in the experiment. It is absolutely legitimate and meaningful, at the present state of the technique, to continue developing the micro MIM towards production processes for micro components.

Metal Injection Molding Analysis of WGV Head in a Turbo Charger of Gasoline Automobile (가솔린 자동차 터보차져용 WGV Head의 금속 분말 사출성형 해석)

  • Park, Bo-Gyu;Park, Si-Woo;Park, Dae-Kyu;Kim, Sang-Yoon;Jeong, Jae-Ok;Jang, Jong-Kwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.388-395
    • /
    • 2015
  • The waste gate valve (WGV) for gasoline vehicles operate in a harsh high-temperature environment. Hence, WGVs are typically made of Inconel 713C, which is a type of Ni-based superalloy. Recently, the metal injection molding (MIM) process has attracted considerable attention for parts used under high-temperature conditions. In this study, an MIM analysis for the head and other parts of the WGV is conducted using a commercial CAE program Moldflow. Further, optimal manufacturing conditions are determined by analyzing flow characteristics at various injection times and locations. Moreover, to improve the accuracy of the analysis results, we compare the actual temperature of the mold during injection processing with that observed through the analysis. As the results, metal injection patterns of analysis are well in accord with these of short shot test. And the temperature variations of analysis is also very similar with those of feedstock when metal injection molding.