• Title/Summary/Keyword: MIL-STD-810

Search Result 59, Processing Time 0.023 seconds

A Study of Vibration Analysis of 100 MPa Class Fitting Thread for Mobile Hydrogen Charging Station (이동식 수소 충전 장비용 100 MPa급 고압 피팅의 진동 해석)

  • JUNYEONG KWON;SEUNGJUN OH;JUNGHWAN YOON;JEONGJU CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.83-89
    • /
    • 2024
  • In order to confirm the safety against vibration of high-pressure fittings for mobile hydrogen charging devices, the natural frequency was confirmed through ANSYS, and vibration data occurring during driving was applied to utilize the vehicle's operating power spectral density data specified in MIL-STD-810H regulations. Fatigue analysis and resonance were confirmed, and as a result, it was confirmed that the sum of the pure phase ratios was less than 1 for the driving history presented in the standard, and there was no risk of resonance.

A Study on the Compatibility of Korean Temperature Guidelines for Stockpile Material Environmental Test (저장물자 환경시험을 위한 한국적 온도기준 적합성 연구)

  • Lee, Il Ro;Byun, Kisik;Cho, Sung-Yong;Kim, Kyung Pil;Park, Jae Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.187-194
    • /
    • 2020
  • The T&E (Test and Evaluation) results were applied for a judgment basis to decide the developmental process of system engineering for efficient weapon system R&D (Research and Development). During the OT&E (Operational Test and Evaluation) and DT&E (Development Test and Evaluation), an environmental test is essential for weapon system development owing to their highly exposed operational conditions. Based on the MIL-STD-810, MIL-HDBK-310, and AECTP 200, the ROK armed forces recommended operating temperatures for the ROK weapon system and applied this to the DT&E and OT&E. This study examined the compatibility of Korean temperature guidelines for stockpile material considering recent climate change. Moreover, this study analyzed the data from hourly measured temperatures on 101 observatories during 60 years, from 1960 to 2020, and percentage (0.5%, 1%, 5%, and 10%) and the 𝜎 (3𝜎, 2𝜎, and 1𝜎) frequency of occurrence on rigorous hot (August) and cold (January) periods, respectively. The results indicate that the highest temperature was 41℃, and the 0.5% frequency of occurrence was 37.0℃. In the case of the cold period, the lowest temperature was -32.6℃ and the 0.5% frequency of occurrence was -21.1℃. By considering the previously recommended operating temperature range for a general ground system, -30 ~ 40℃, regional operation probability is recognized 99.999%. Despite the recent abnormal climate change from global warming, the Korean temperature guidelines are compatible with the stockpile material environmental test.

Development of Performance Analysis 80 kW High-efficiency Permanent Magnet Generator for Radar System Power Supply (레이더 체계 전원공급용 80 kW급 고효율 영구자석형 발전기 개발 및 성능분석)

  • Ryu, Ji-Ho;Cho, Chong-Hyeon;Chong, Min-Kil;Park, Sung-Jin;Kang, Kwang-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.60-71
    • /
    • 2019
  • Electrical power supply is needed to operate the radar system in the field. In addition, it should not cause performance deterioration under the environmental factors due to characteristics of military equipment, and should not cause malfunction due to electromagnetic waves generated in radar, and then should not cause malfunction in radar equipment. Therefore, By applying a permanent magnet to the rotor of the generator, light weighting and high efficiency of generator were achieved. As a result, electrical performance test of the generator, the rated output power was 80.8 kW, the maximum output power was 88.1 kW, and the output power efficiency was 98.1 % under the full load condition. When the load capacity of the generator was changed from no load to full load, the maximum voltage variation was 3.6 % and the frequency variation was 0.3 %. As a result of the transient response test for measuring the output power of the generator according to the load characteristics change, the maximum voltage variation of 7.9 %, frequency variation of 0.5 % were confirmed, and the transient response time was 2.1 seconds. Environmental tests were conducted in accordance with MIL-STD-810G and MIL-STD-461F to evaluate the operability of the generator groups. Normal operation of radar system generator group was confirmed under high temperature and low temperature environment conditions. Electromagnetic tests were conducted to check if electromagnetic wave generated from both radar system and generator group in operation caused any performance deterioration to each other. As a result, it was confirmed that the performance deterioration due to electromagnetic wave inflow, radiation, and conduction did not occur. It is expected that it should be possible to provide high efficiency power supply and stable power supply by applying to various military system as well as radar system.

Development Process of Mechanical Structure for a Large Radar (대형 레이더 기계구조부 개발 절차)

  • Shin, Dongjun;Lee, Jonghak;Kang, Youngsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In this paper, design requirements of the large radar were investigated, and development was performed through the analysis and design. Large radar should be designed by bearing the 75 knot wind force and $20kg/m^2$ ice mass as operating conditions in order to meet structural stability, and driving torque and bearing load were calculated for securing the driving stability. Thermal dissipation analysis was performed considering TRM and DC-DC Converter's limitation temperature by $50^{\circ}C$ ambient temperature condition in order to attain thermal stability, and PSD and shock analysis were carried out by using MIL-STD-810G vibration and shock specification in order to transport and installation of the large radar. As a result, all components of large radar could secure the structural stability more than 2.8 factor of safety, and driving stability was also secured with adequate bearing fatigue life. Thermal stability was attained by allowable max temperature 88.7 C of the TRM, and structural stability for transportation and installation of the large radar was also secured more than 5 factor of safety. After it was transported and installed to the radar site, operating capability was finally verified by rotating the large radar.

A Measurement of Sea Transportation Load (해상운송 하중측정)

  • Jeon, Yeong-Du;Park, Jong-Chan;Jo, Cheol-Hun;Park, Dong-Su;Jeong, Ui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.143-148
    • /
    • 2006
  • This article summarizes the results of sea transportation load measurements, which will be used as the reference to the sea transportation environment condition for the launch vehicle of KSLV-I. KSLV-I will be transported by Sea from Pusan to the NARO space center in Gohung, Chunnam province. Since the vibration load condition during sea transportation is considered as one of the important design parameters of KSLV-I and its transportation means, it is necessary to directly measure the environmental condition of sea transportation loads prior to establish the sea transportation plan in detail. This material includes the measured data of 3-axis linear accelerations and 3-axis angular rates on the board of a barge-ship, which is towed by a tug boat during shipping operation. This barge-ship is same class with one which will actually carry KSLV-I. The results show that the measured load condition during sea transportation is not severer than the reference data of MIL-STD-810F and Zenit-3SL launch system.

  • PDF

Vibration Analysis of Film Winding Core Automatic Supply System Using US Military Standards (미 군사규격을 적용한 권취 코어 자동공급장치의 진동해석)

  • Go, Jeong-Il;Park, Soo-Hyun;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.91-99
    • /
    • 2022
  • By applying METHOD 514.8 of the US military standard MIL-STD-810H, vibration analysis of the winding core automatic feeding device was performed during vehicle transportation. The contact point between the LM guide and main support frame was weak in the vertical axis, transverse axis, and longitudinal axis during the transportation of the automatic winding core feeder vehicle, and the maximum equivalent stress was 236.31 MPa in the longitudinal axis. When random vibration was applied, the safety margin in the longitudinal direction was 0.26, indicating low safety. The safety margin was changed by increasing the damage factor to 0.1. Finally, the safety margin was improved to 3.48 to secure safety. Resonance occurred with a Q factor of 9.34 in the harmonic response to which the RMS value of the ASD data was input, and the vertical axis safety margin was derived as 0.16. When the damping factor was 0.15, the Q factor was 3.37, and resonance was avoided with a safety margin of 6.62.

Fatigue Life Prediction for the Skin Structures of Aircraft Sensor Pod Under Acoustic Load with Mean Stress (평균 응력을 고려한 음향 하중을 받는 항공기 센서 포드 외피 구조의 내구 수명 분석)

  • Min-Hyeok Jeon;Yeon-Ju Kim;Hyun-Jun Cho;Mi-Yeon Lee;In-Gul Kim;Hansol Lee;Jae Myung Cho;Jong In Bae;Ki-Young Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • The skin structure of sensor pod mounted on the exterior of aircraft can be exposed to the acoustic dynamic load and static load such as aerodynamic pressure and inertial load during flight. Fatigue life prediction of structural model under acoustic load should be performed and also differential stiffness of model modified by static load should be considered. The acoustic noise test spectrum of MIL-STD-810G was applied to the structural model and the stress response power spectral density (PSD) was calculated. The frequency response analysis was performed with or without prestress induced by inplane static load, and the response spectrum was compared. Time series data was generated using the calculated PSD, and the time and frequency domain fatigue life were predicted and compared. The variation of stress response spectrum due to static load and predicted fatigue life according to the different structural model considering mean stress were examined and decreasing fatigue life was observed in the model with prestress of compressive static load.

Development of 2-kW Class C Amplifier Using GaN High Electron Mobility Transistors for S-band Military Radars (S대역 군사 레이더용 2kW급 GaN HEMT 증폭기 개발)

  • Kim, Si-Ok;Choi, Gil-Wong;Yoo, Young-Geun;Lim, Byeong-Ok;Kim, Dong-Gil;Kim, Heung-Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.421-432
    • /
    • 2020
  • This paper proposes a 2-kW solid-state power amplifier (SSPA) developed by employing power amplifier pallets designed using gallium-nitride high electron mobility transistors, which is used in S-band military radars and to replace existing traveling-wave tube amplifier (TWTA). The SSPA consists of a high-power amplifier module, which combines eight power amplifier pallets, a drive amplifier module, a digital control module, and a power supply unit. First, the amplifier module and component were integrated into a small package to account for space limitations; next, an on-board harmonic filter was fabricated to reject spurious components; and finally, an auto gain control system was designed for various duty ratios because recent military radar systems are all active phase radars using the pulse operation mode. The developed SSPA exhibited a max gain of 48 dB and an output power ranging between 63-63.6 dBm at a frequency band of 3.1 to 3.5 GHz. The auto gain control function showed that the output power is regulated around 63 dBm despite the fluctuation of the input power from 15-20 dBm. Finally, reliability of the developed system was verified through a temperature environment test for nine hours at high (55 ℃) / low (-40℃) temperature profile in accordance with military standard 810. The developed SSPA show better performance such as light weight, high output, high gain, various safety function, low repair cost and short repair time than existing TWTA.

Dynamic Characteristic Analysis Procedure of Helicopter-mounted Electronic Equipment (헬기 탑재용 전자장비의 동특성 분석 절차)

  • Lee, Jong-Hak;Kwon, Byunghyun;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.759-769
    • /
    • 2013
  • Electronic equipment has been applied to virtually every area associated with commercial, industrial, and military applications. Specifically, electronics have been incorporated into avionics components installed in aircraft. This equipment is exposed to dynamic loads such as vibration, shock, and acceleration. Especially, avionics components installed in a helicopter are subjected to simultaneous sine and random base excitations. These are denoted as sine on random vibrations according to MIL-STD-810F, Method 514.5. In the past, isolators have been applied to avionics components to reduce vibration and shock. However, an isolator applied to an avionics component installed in a helicopter can amplify the vibration magnitude, and damage the chassis, circuit card assembly, and the isolator itself via resonance at low-frequency sinusoidal vibrations. The objective of this study is to investigate the dynamic characteristics of an avionics component installed in a helicopter and the structural dynamic modification of its tray plate without an isolator using both a finite element analysis and experiments. The structure is optimized by dynamic loads that are selected by comparing the vibration, shock, and acceleration loads using vibration and shock response spectra. A finite element model(FEM) was constructed using a simplified geometry and valid element types that reflect the dynamic characteristics. The FEM was verified by an experimental modal analysis. Design parameters were extracted and selected to modify the structural dynamics using topology optimization, and design of experiments(DOE). A prototype of a modified model was constructed and its feasibility was evaluated using an FEM and a performance test.