• Title/Summary/Keyword: MICRO

Search Result 16,791, Processing Time 0.039 seconds

Development of Micro Press for Forming the Micro Thin Foil Valve (마이크로 박판 밸브 성형을 위한 마이크로 프레스 개발)

  • Lee, Hye-Jin;Lee, Nak-Kyu;Lee, Hyoung-Wook
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.166-171
    • /
    • 2007
  • In this paper Research development about a micro metal forming manufacturing system has been developed. A micro forming system has been achieved in Japan and it's developed micro press is limited to single forming process. To coincide with the purpose to be more practical, research and development is necessary about the press which the multi forming process is possible. We set the development of the equipment including micro deep drawing, micro punching and micro restriking process to the goal. To achieve this goal, we set the application product to a micro thin foil valve which is used in the micro pump module. The compound die set has been designed and manufactured to make two step process. The material of thin foil valve is SUS-304 and its thickness is 50$\mu$m. We can get a good forming results from micro punching experiments in this paper.

Development of Micro Injection Molding Machine for Micro Parts (미소부품용 미세사출성형기 시작품 개발)

  • 제태진;신보성;최두선;이응숙;김영민;강신일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.337-341
    • /
    • 2002
  • In these day, micro systems have gained attention with development of advance technologies. Researches about the fabrication of micro parts are actively made in the whole world. Among the researches, technology for micro injection molding machine is one of the key issues for fabrication of micro parts. In this study, we developed a micro injection molding machine for micro parts. To achieve this, injection unit was constructed using a screw with diameter of 12 mm. Clamping unit with clamping force of 1.75 kgf/$\textrm{cm}^2$ was constructed. Also verification test fur fabrication of micro parts was performed. It was performed that the micro injection molding machine can fabricate micro parts based on the result.

  • PDF

Fabrication and Mixing Characteristics of a Micro-Mixer with a Quasi-Active Rotor (준 능동형 로터를 이용한 마이크로 혼합기의 제작 및 혼합특성)

  • Kim, Young-Dae;Lee, Jong-Kwang;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.417-424
    • /
    • 2009
  • A micro-mixer with a quasi-active rotor was fabricated, and mixing characteristics were evaluated. The proposed micro-mixer combines an active type micro-mixer with a passive type micro-mixer. The micro-rotor, which is a moving part of an active type micro-mixer, is added in a micro-chamber of a passive type vortex micro-mixer. The rotor rotated by inflows tangent to a chamber, causing strong perturbations. The micro-mixers were fabricated using photosensitive glass. Mixing efficiency of the micro-mixers was measured using an image analysis method. Mixing efficiency and characteristics of the micro-rotor mixer were compared with the vortex micro-mixer without a rotor. Mixing efficiency was reduced as Reynolds number increased at a low Reynolds number due to decrease of residence time. Mixing efficiency at higher Reynolds number, on the other hand, was improved even though residence time decreased since the contact surface between fluids increased by twisted flow. The perturbation induced by rotating rotor at greater than Re 200 improved the efficiency of the rotor mixer.

Fabrication of 3-D Micro Structure and Micro Tool Using MEDM (미세 방전을 이용한 3차원 미세 구조물 및 미세 공구 제작)

  • Kim B. H.;Yi S. M.;Chu C. N.;Kang Y. H.;Choi T. H.;Park H. J.;Lee Y. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.251-256
    • /
    • 2005
  • 3-D micro structures and micro tools were fabricated using Micro Electrical Discharge Machining (MEDM). To make micro structures, micro electrical discharge milling process was applied. During micro electrical discharge milling, electrode (tool) worn in the both axial and radial direction. To compensate tool wear which has significant influence on machining accuracy, machining path overlapping was proposed. Machining characteristics of micro electrical discharge milling was investigated in considering of depth of cut and capacitance of discharge circuit. Micro complex shaped tools were also fabricated using REDM (reverse electrical discharge machining). Sacrificial electrodes were machined through electrical discharge milling process and were used as electrode to make micro tools. Using this process several micro tools shape of 'ㄷ', 'ㅁ' and 'o' were fabricated. With these complex shaped tools, micro machining was successfully applied repeatedly.

Fabrication of 3-D Micro Structure and Micro Tool Using MEDM (미세 방전을 이용한 3차원 미세 구조물 제작 및 미세 공구 제작)

  • Lee Y. S.;Kim B. H.;Yi S. M.;Chu C. N.;Kang Y. H.;Choi T. H.;Park H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.11a
    • /
    • pp.255-259
    • /
    • 2004
  • 3-D micro structures and micro tools are fabricated using MEDM (Micro Electric Discharge Machining). To make micro structures, micro electro discharge milling process is applied. During micro electro discharge milling, electrode (tool) wears both axial and radial direction. To compensate tool wear which influences significantly machining accuracy, overlap machining path is proposed. Machining characteristics of micro electro discharge milling is investigated in considering of depth of cut and capacitance of discharge circuit. Micro complex shaped tools are fabricated using REDM (reverse electro discharge machining). Sacrificial electrode is machined through electro discharge milling process and is used as electrode to make micro tools. Using this process several micro tools shape of 'ㄷ', 'ㅁ' and 'o' are fabricated. With these complex shaped tools, micro machining is successfully applied repeatedly.

  • PDF

Analysis of the stress disribution around flaws and the interaction effects between fatigue cracks by finite element method (유한요소법에 의한 결함 주위의 응력분포와 피로크랙의 간섭효과)

  • Song, S.H.;Kim, J.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.154-161
    • /
    • 1995
  • In order to analysis of the stress distribution around flaws and the interaction effects between fatigue cracks, stress around micro hole was analyzed by Finite Element Method(F.E.M.) and micro hole specimens were tested using rotary bending fatigue machine and twisting fatigue machine to identify stress effects for fatigue cracks initiating from micro holes and interaction effects between micro holes. The results are as follows : Interaction effects of .sigma. $_{y}$for the micro hole side is larger than the large micro hole side when the interval between micro holes is near. Stress concentration factor increase as the diameter of micro hole becomes smaller. But, stress field of micro hole is smaller than that of large micro hole at h .leq. r (h:depth of micro hole, r:radius of micro hole) and that of large hole is larger than that of small micro hole at h >r expect the small range from micro hole.e.

  • PDF

Laser Process of Polymer Micro Fluidic Devices (레이저 가공 폴리머 마이크로 유체 장치)

  • Kim, Joo-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.129-137
    • /
    • 2006
  • Polymer micro-fluidic devices were fabricated with laser processes. A UV laser and a femto laser were used to machine polymer micro-fluidic structures directly. This laser direct machining process suits the need of rapid prototyping, as in many applications changes from the original design are often required. As examples, two polymer micro-systems were developed: a micro-check valve and a micro diffuser pump. The micro fluidic devices can be applied for many applications such as clinical diagnostics and drug delivery. Advantages and disadvantages using polymers as a material for micro-fluidic applications are discussed.

Clinical Utility of MicroPure US Imaging for Breast Microcalcifications (유방 미세 석회에 대한 MicroPure 초음파)

  • Heerin Lee;Sung Hun Kim;Bong joo Kang;Jeong Min Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.4
    • /
    • pp.876-886
    • /
    • 2022
  • Purpose To evaluate the performance of MicroPure US imaging to detect and characterize microcalcifications. Materials and Methods A total of 171 lesions with suspicious microcalcifications seen on mammography and B-mode US were included and simultaneously evaluated using MicroPure US imaging. The size of microcalcifications was divided into small (punctate, amorphous, fine pleomorphic, and fine linear) and large (coarse heterogeneous), and the extent was divided into narrow (grouped) and wide (others). MicroPure US imaging visibility was divided into four types based on the number of microcalcifications on the two images: B > M (more on B-mode), B = M (similar), B < M (more on MicroPure), and negative. Triple pairwise comparison was used to evaluate the imaging features according to the MicroPure US imaging visibility. Results Among the 171 lesions examined, 157 lesions (91.8%) were detected by MicroPure US imaging. The proportion of Breast Imaging Reporting and Data System (BI-RADS) category 4A was significantly higher in the MicroPure positive group, and that of category 4B was significantly higher in the MicroPure negative group (p = 0.035). The other imaging features did not differ. Among the positive MicroPure subgroups, all features showed no significant difference. Conclusion MicroPure US imaging demonstrated 91.8% positivity in detecting microcalcifications on B-mode US. MicroPure US imaging visibility correlated with the BI-RADS category of microcalcifications.

A Study on Selective Transfer and Reflow Process of Micro-LED using Micro Stamp (마이크로 스탬프를 이용한 Micro-LED 개별 전사 및리플로우 공정에 관한 연구)

  • Han, Seung;Yoon, Min-Ah;Kim, Chan;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.93-100
    • /
    • 2022
  • Micro-light emitting diode (micro-LED) displays offer numerous advantages such as high brightness, fast response, and low power consumption. Hence, they are spotlighted as the next-generation display. However, defective LEDs may be created due to non-uniform contact loads or LED alignment errors. Therefore, a repair process involving the replacement of defective LEDs with favorable ones is necessitated. The general repair process involves the removal of defective micro-LEDs, interconnection material transfer, as well as new micro-LED transfer and bonding. However, micro-LEDs are difficult to repair since their size decreases to a few tens of micron in width and less than 10 ㎛ in thickness. The conventional nozzle-type dispenser for fluxes and the conventional vacuum chuck for LEDs are not applicable to the micro-LED repair process. In this study, transfer conditions are determined using a micro stamp for repairing micro-LEDs. Results show that the aging time should be set to within 60 min, based on measuring the aging time of the flux. Additionally, the micro-LEDs are subjected to a compression test, and the result shows that they should be transferred under 18.4 MPa. Finally, the I-V curves of micro-LEDs processed by the laser and hot plate reflows are measured to compare the electrical properties of the micro-LEDs based on the reflow methods. It was confirmed that the micro-LEDs processed by the laser reflow show similar electrical performance with that processed by the hot plate reflow. The results can provide guidance for the repair of micro-LEDs using micro stamps.

Development of Component of Micro Thermal Device in KAIST (KAIST의 마이크로 열기관 요소 기술 개발)

  • Lee, Dae Hoon;Park, Dae-Eun;Yoon, Euisil;Kwon, Sejin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.482-485
    • /
    • 2002
  • Development projects in KAIST rotted to the micro thermal device is introduced. Multi disciplinary research team is composed by combustion group and semiconductor group in KAIST and catalyst research center in KRICT to develop micro thermal/fluidic device and various items are on development. Among the projects, various kind of componenst that is required by the micro thermal devicesystem is introduced. Technology related to development of micro combustor, Micro igniter, micro fabrication of 3D structure, micro reactor and micro catalyst preparation is introduced.

  • PDF