• Title/Summary/Keyword: MI(Magneto-Impedance) Sensor

Search Result 12, Processing Time 0.017 seconds

Temperature Dependence of Magnetoimpedance Effect in Amorphous $Co_{66}Fe_4Ni_1B_{14}Si_{15}$ (온도에 따른 비정질 금속$Co_{66}Fe_4Ni_1B_{14}Si_{15}$ 의 자기 임피던스 효과)

  • 김용국;김택기;김성일;이희복
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.1
    • /
    • pp.21-26
    • /
    • 1998
  • The temperature dependence of the magnetoimpedance (MI) effect is important both for scientific study and for thermal stability of MI sensor. We have performed the measurement of MI effect in amorphous $Co_{66}Fe_1Ni_1B_{14}Si_{15}$ (Metglas 2714 A) ribbon from a cryogenic chamber where the temperature of the sample can vary from 10 K to 300 K. The ac current was fixed at 10 mA for all measured frequencies ranging from 100 KHz to 10 MHz. The magnetoimpedance ratio (MIR) was revealed the drastic increment as a function of MIR (T) = MIR (0) exp(cT$^2$) where c is a constant. The measured MIR values at room temperature are usually 2-3 times larger than the data measured at 10 K for all measured frequencies. However, the shapes of the MIR curves are remained. This result shows the potential application of the MI effect for a temperature sensor. The frequency dependence of MIR has shown the typical tendency where the maximum values of MIR are increasing ans also the shapes of MIR curves are getting broader as the measured frequency increases.

  • PDF

Statistical Analysis of Pc1 Pulsations Observed by a BOH Magnetometer

  • Kim, Jiwoo;Hwang, Junga;Kim, Hyangpyo;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.19-27
    • /
    • 2020
  • Pc1 pulsations are important to consider for the interpretation of wave-particle interactions in the Earth's magnetosphere. In fact, the wave properties of these pulsations change dynamically when they propagate from the source region in the space to the ground. A detailed study of the wave features can help understanding their time evolution mechanisms. In this study, we statistically analyzed Pc1 pulsations observed by a Bohyunsan (BOH) magneto-impedance (MI) sensor located in Korea (L = 1.3) for ~one solar cycle (November 2009-August 2018). In particular, we investigated the temporal occurrence ratio of Pc1 pulsations (considering seasonal, diurnal, and annual variations in the solar cycle), their wave properties (e.g., duration, peak frequency, and bandwidth), and their relationship with geomagnetic activities by considering the Kp and Dst indices in correspondence of the Pc1 pulsation events. We found that the Pc1 waves frequently occurred in March in the dawn (1-3 magnetic local time (MLT)) sector, during the declining phase of the solar cycle. They generally continued for 2-5 minutes, reaching a peak frequency of ~0.9 Hz. Finally, most of the pulsations have strong dependence on the geomagnetic storm and observed during the early recovery phase of the geomagnetic storm.