The new multi-dimensional higher order interpolation scheme called MHIS is developed. Firstly, multi-dimensional TVD condition is derived based on one-dimensional TVD condition. Using multi-dimensional TVD condition, 2nd, 3rd and 5th order MHIS are presented. By help of multi-dimensional TVD condition, it is possible to captured a discontinuity monotonically even in a multi-dimensional flow. It is verified through several test cases that the accuracy and the robustness of MHIS are enhanced in regions of shock discontinuities as well as boundary-layers.
Stereoselective solvolyses of optically active activated esters in the aggregate system of optically active polymeric surfactants containing imidazole and benzene moieties were performed. The catalyst polymers employed were copolymers of N-methacryloyl-L-histidine methyl ester (MHis) with N,N-dimethyl-N-hexadecyl-N-[10-(p-methacryloylo xyphenoxycarbonyl)-decyl]ammonium bromide(DEMAB). In the solvolyses of N-carbobenzoxy-D- and L-phenylalanine p-nitrophenyl esters (D-NBP and L-NBP) by polymeric catalysts, copoly(MHis-DEMAB) exhibited not only increased catalytic activity but also enhanced enantioselectivity as the mole ${\%}$ of surfactant monomers in the copolymers increased. The polymeric catalysts showed noticeable enantioselective solvolyses toward D- and L-NBP of the substrates employed. As the reaction temperature was lowered for the solvolyses of D- and L-NBP with the catalyst polymer containing 3.5 mole ${\%}$ of MHis, the increased reaction rate and enhanced enantioselectivity were observed. The coaggregative systems of the polymer and monomeric surfactants were also investigated. In the case of coaggregate system consisted of 70 mole ${\%}$ of cetyldimethylethylammonium bromide with polymeric catalyst showed maximum enantioselective catalysis, viz., $k_{cat}(L)/k_{cat}(D)$ = 2.85. The catalyst polymers in the sonicated solvolytic solutions were confirmed to form large aggregate structure by electron microscopic observation.
비디오 개체 분할은 비디오를 구성하는 영상 프레임 각각에 대해 관심 개체 분할을 수행해야 할 뿐만 아니라, 해당 비디오를 구성하는 프레임 시퀀스 전체에 걸쳐 개체들에 대한 정확한 트래킹을 요구하기 때문에 난이도가 높은 기술이다. 특히 드라마 비디오에서 인물 개체 분할은 다양한 장소와 시간대에서 상호 작용하는 복수의 주요 등장인물들에 대한 정확한 트래킹을 요구하는 특징을 가지고 있다. 또한, 드라마 비디오 인물 개체분할은 주연 인물들과 조연 혹은 보조 출연 인물들 간의 등장 빈도에 상당한 차이가 있어 일종의 클래스 불균형 문제도 있다. 본 논문에서는 미생 드라마 비디오들을 토대로 구축한 인물 개체 분할 데이터 집합인 MHIS를 소개하고, 등장인물 클래스 간의 심각한 데이터 불균형 문제를 효과적으로 해결하기 위한 새로운 비디오 데이터 보강 기법인 CDVA를 제안한다. 기존의 비디오 데이터 보강 기법들과는 달리, 새로운 CDVA 보강 기법은 비디오들의 시-공간적 맥락을 충분히 고려해서 목표 인물이 삽입되어야 할 배경 클립 내의 위치를 결정함으로써, 보다 더 현실적인 보강 비디오들을 생성한다. 따라서 본 논문에서 제안하는 새로운 비디오 데이터 보강 기법인 CDVA는 비디오 개체 분할을 위한 심층 신경망 모델의 성능을 효과적으로 향상시킬 수 있다. 본 논문에서는 MHIS 데이터 집합을 이용한 다양한 정량 및 정성 실험들을 통해, 제안 비디오 데이터 보강 기법의 유용성과 효과를 입증한다.
우리나라의 자살률은 OECD 표준인구 10만 명당 기준 23.0명(2017년 기준)으로 OECD 회원국 중 가장 높고 OECD 평균 11.2명보다 2.1배 높다. 강원도 내 자살률이 전국에서 4번째로 높고 자살자 수가 507명으로 인구 10만 명당 자살률이 26.1명 으로 나타났다. 이에 강원도 자살률 감소를 위해 통계청, 국가보건통계지표, 지역사회건강조사, 건강보험공단 DB, 정신건강사례관리시스템(MHIS), 선행연구 등을 기초자료로 자살과 관련된 요인을 분석하고 이를 바탕으로 강원도의 자살률 감소와 효과적인 사회적 중재 모형의 설계 및 활용을 위한 기초자료 제공하고자 한다.
In this paper, we propose pyramid appearance and global structure action descriptors on both RGB and depth motion history images and a model-free method for human action recognition. In proposed algorithm, we firstly construct motion history image for both RGB and depth channels, at the same time, depth information is employed to filter RGB information, after that, different action descriptors are extracted from depth and RGB MHIs to represent these actions, and then multimodality information collaborative representation and recognition model, in which multi-modality information are put into object function naturally, and information fusion and action recognition also be done together, is proposed to classify human actions. To demonstrate the superiority of the proposed method, we evaluate it on MSR Action3D and DHA datasets, the well-known dataset for human action recognition. Large scale experiment shows our descriptors are robust, stable and efficient, when comparing with the-state-of-the-art algorithms, the performances of our descriptors are better than that of them, further, the performance of combined descriptors is much better than just using sole descriptor. What is more, our proposed model outperforms the state-of-the-art methods on both MSR Action3D and DHA datasets.
Objectives : To identify the risk factors of dementia among the elderly in a large city. Methods : A cross-sectional study was conducted in July 2001, with potential participants selected by stratified two stage cluster sampling of the elderly population of Keumgog dong, Busan. A total of 452 elderly people aged 65 years and over, underwent a two phase diagnostic procedure. Mini-mental State Examination-Korean (MMSE-K) and Samsung Dementia Questionnaire were used for the 1st stage, and the Clinical Dementia Rating Scale (CDR), the Bartel ADL, and IADL Index, the Korean Geriatric Depression Scale (KGDS), the Modified Hatchinski Ischemic Scale (MHIS), and other laboratory tests were used for the 2nd stage. Results : Of the 446 participants finally chosen, 45 were confirmed with dementia, and 363 as normal, with the rests not confirmed with dementia or as normal, were excluded from the analysis. According to the logistic regression analysis, the risk of dementia was significantly higher In: people aged 80 and above (OR=4.36, 95% CI=1.97-9.62), illiterate (OR=3.58, 95% CI=1.71-7.46), who had a history of strokes (OR=6.35, 95% CI=2.71-14.87), or who had 3 history of hyperlipidemia (OR=4.74, 95% CI=1.65-13.61), compared to their counterparts. Conclusions : These results suggest that efforts to prevent strokes and hyperlipidemia can significantly decrease the risk of dementia.
본 논문에서는 4차원 시공간 (4D-ST, [x,y,z,t]) 특징을 이용하여 행동 방향을 인식하는 방법을 제안한다. 이를 위해 4차원 시공간 특징점 (4D-STIPs, [x,y,z,t])을 제안하였고, 이는 여러 다른 뷰에서 촬영한 이미지들로부터 복원된 3차원 공간 (3D-S, [x,y,z]) 볼륨으로부터 계산된다. 3차원 공간정보를 갖고 있는 3D-S 볼륨과 4D-STIPs는 2차원 공간 (2D-S, [x,y]) 뷰로 사영을 하여 임의의 2D-S 뷰에서의 특징을 생성해 낼 수 있다. 이 때, 사영 방향을 결정 할 수 있으므로, 학습 시 방향에 대한 정보를 포함하여 행동 방향을 인식 할 수 있다. 행동 방향을 인식하는 과정은 두 단계로 나눌 수 있는데, 우선 어떤 행동인지를 인식하고 그 후, 방향 정보를 이용하여 최종적으로 행동 방향을 인식한다. 행동 인식과 방향 인식을 위해, 사영된 3D-S 볼륨과 4D-STIPs은 각각 움직이는 부분과 움직이지 않는 부분에 대한 정보를 담고 있는 motion history images (MHIs)와 non-motion history images (NMHIs)로 구성된다. 이러한 특징들은 행동 인식을 위해, 방향 정보에 상관없이 같은 행동이면 같은 클래스로 분류되어 support vector data description (SVDD) 분류기로 학습되고, support vector domain density description (SVDDD)을 이용하여 인식된다. 인식된 행동에서 최종적으로 방향을 인식하기 위해 각 행동을 방향 클래스로 분류하여 SVDD 분류기로 학습하고 SVDDD로 인식한다. 제안된 방법의 성능을 보이기 위해서 INRIA Xmas Motion Acquisition Sequences (IXMAS) 데이터셋에서 제공하는 3D-S 볼륨을 사용하여 학습을 하고, 행동 방향 인식 실험이 가능한 SNU 데이터셋을 구축하여 인식 실험을 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.