• 제목/요약/키워드: MHI(Motion History Image)

검색결과 14건 처리시간 0.027초

MHI의 형태 정보를 이용한 동작 인식 (Gesture Recognition using MHI Shape Information)

  • 김상균
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권4호
    • /
    • pp.1-13
    • /
    • 2011
  • 본 논문에서는 MHI(Motion History Image)의 형태학적 정보를 이용하여 동작을 인식하는 제스처 인식(Gesture Recognition) 시스템을 제안한다. 입력되는 영상으로부터 동작에 관한 정보를 제공하는 MHI를 획득하고, 이 MHI로부터 x, y 각각의 좌표에 대한 기울기(gradient) 영상을 추출한다. 각각의 기울기 영상에 형태 문맥기법(shape context method)을 적용하여 형태 정보를 추출하고, 추출된 형태 정보 값들을 특징 값으로 사용한다. 이렇게 획득한 특징값들을 최종적으로 SVM(Support Vector Machine) 분류기로 학습 및 분류하여 동작을 인식한다. 제안하는 시스템은 MHI의 형태학적인 정보들을 사용함으로써 동작의 방향성을 인식할수 있고 다수 사람의 동작 인식이 가능하다. 뿐만 아니라 간단한 특징 추출 방법으로 높은 인식률의 시스템을 구현하였다.

Emergency Detection Method using Motion History Image for a Video-based Intelligent Security System

  • Lee, Jun;Lee, Se-Jong;Park, Jeong-Sik;Seo, Yong-Ho
    • International journal of advanced smart convergence
    • /
    • 제1권2호
    • /
    • pp.39-42
    • /
    • 2012
  • This paper proposed a method that detects emergency situations in a video stream using MHI (Motion History Image) and template matching for a video-based intelligent security system. The proposed method creates a MHI of each human object through image processing technique such as background removing based on GMM (Gaussian Mixture Model), labeling and accumulating the foreground images, then the obtained MHI is compared with the existing MHI templates for detecting an emergency situation. To evaluate the proposed emergency detection method, a set of experiments on the dataset of video clips captured from a security camera has been conducted. And we successfully detected emergency situations using the proposed method. In addition, the implemented system also provides MMS (Multimedia Message Service) so that a security manager can deal with the emergency situation appropriately.

3D 동영상 변환을 위한 MHI 기반 모션 깊이맵 생성 (Motion Depth Generation Using MHI for 3D Video Conversion)

  • 김원회;길종인;최창열;김만배
    • 방송공학회논문지
    • /
    • 제22권4호
    • /
    • pp.429-437
    • /
    • 2017
  • 2D영상의 3D변환 기술은 3D 디스플레이 및 3DTV에 기본적으로 장착된 기술로 꾸준히 연구 및 상업화가 진행된 기술이다. 3D변환은 정지영상으로부터 다양한 깊이단서를 이용하여 깊이맵을 추출한 후에, DIBR(Depth Image Based Rendering)로 입체영상을 생성한다. 또한 비디오에서 추출할 수 있는 모션정보를 활용하여 모션 깊이맵을 얻기도 한다. 본 논문에서는 기존의 블록기반 모션예측, 광유 등의 모션 추출 방식이 아닌 운동 히스토리 영상(Motion History Image)를 활용하여 모션 깊이맵을 얻는 새로운 방법을 제안하고 실제 활용 가능성을 조사한다. 실험에서는 제안한 방법을 다양한 운동 유형을 가지는 8개의 2D 비디오 콘텐츠에 적용하였고, 생성된 모션 깊이맵의 정성적 평가 및 수행 속도의 비교를 통하여 MHI 기반 깊이맵의 실제 적용이 적합함을 증명하였다.

사람의 머리 모션 인식을 이용한 게임 인터페이스 구현 (Implementation of Game Interface using Human Head Motion Recognition)

  • 이사무엘;이창우
    • 한국산업정보학회논문지
    • /
    • 제19권5호
    • /
    • pp.9-14
    • /
    • 2014
  • 최근 컴퓨터 비젼이나 게임과 같은 분야에서 사람의 모션을 이용한 다양한 콘텐츠들이 개발되고 있다. 모션을 이용하여 콘텐츠를 제작하거나 응용프로그램을 개발하게 되면, 사용자는 게임이나 콘텐츠에 더욱 몰입감을 느낄 수 있고, 그에 따른 콘텐츠 사용의 만족도가 향상된다. 본 논문에서는 웹 카메라를 이용해서 캡처한 영상으로부터 모션을 인식하고, 이를 별도의 장비 없이 게임의 인터페이스로 활용할 수 있는 방법을 개발한다. 제안된 방법은 MHI(Motion History Image)와 피부색 검출 결과를 결합하여 입력영상으로부터 사람의 머리 부분을 분할하고, MHI 시퀀스(Sequence)를 이용하여 방향과 이동거리를 계산한다. 실험결과에서 제안된 사람의 머리 모션 인식 결과를 실제 게임에 적용하여 게임 캐릭터를 제어하기 위해 사용하였다. 제안된 방법은 사용자의 몰입감 정도를 향상시킬 수 있음을 증명하였고, 그로인해 기능성 게임의 사용자 인터페이스로의 가능성을 확인하였다.

상황인식 컴퓨팅을 위한 사람 움직임 이벤트 인식 (Recognition of Events by Human Motion for Context-aware Computing)

  • 최요환;신성윤;이창우
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권4호
    • /
    • pp.47-57
    • /
    • 2009
  • 최근 컴퓨터비젼 분야에서 이벤트 검출 및 인식이 활발히 연구되고 있으며, 도전적인 주제들 중 하나이다. 본 논문에서는 사무실 환경에서 발생할 수 있는 이벤트의 검출 및 인식을 위한 방법을 제안한다. 제안된 방법은 MHI(Motion History Image) 시퀀스(sequence)를 이응한 인간의 모션을 분석하며, 사람의 처형과 착용한 옷의 종류와 색상, 그리고 카메라로부터의 위치관계에 불변한 특성을 가진다. 제안된 방법은 기존의 방법들 중, 칼라 정보를 이용한 방법에 비해 조명의 변화에 민감하지 않은 장점이 있으며, 관심의 대상이 되는 객체의 외형과 같은 사전지식에 의존하는 방법에 비해 스케일에 민감하지 않은 장점이 있다. 에지검출 기술을 HMI 순서 영상 정보와 결합하여 사람 모션의 기하학적 특징을 추출한 후, 이벤트 인식의 기본정보로 활용한다. 제안된 방법은 단순한 이벤트 검출 프레임웍을 사용하기 때문에 검출하고자 하는 이벤트의 설명만을 첨가하는 것으로 확장이 가능하다. 또한, 제안된 방법은 컴퓨터비젼 기술에 기반한 많은 감시시스템 뿐 아니라 상황인식 기반의 이벤트 검출 시스템에 핵심기술이다.

CAMshift와 칼만필터를 이용한 야구 중계화면에서의 배트 추적 (bat tracking in baseball broadcasting using CAMshift and Kalman filter)

  • 조경민;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.695-698
    • /
    • 2015
  • 본 논문에서는 CAMshift와 칼만필터를 이용하여 기존 방송사가 제공하는 야구 중계 화면에서 타자가 스윙하는 배트를 추적하는 방법을 제안한다. 타자가 스윙을 하는 동안 배트는 빠른 속도로 위치가 변하고, 모양 또한 계속 변하며 회전한다. 이러한 이유로, 배트의 invariant로 색상정보를 이용하기 위해 탐색윈도우의 크기를 스스로 조정하는 CAMshift를 적용한다. 색상정보를 이용하기 때문에 배경에 배트와 비슷한 색의 객체가 존재하면 추적에 방해가 되므로 탐색범위를 MHI(Motion History Image)를 이용하여 Motion detection되는 범위로 좁힌다. 칼만필터를 함께 적용함으로써 탐색윈도우의 크기 변화를 제한하고 보다 높은 추적의 정확도를 얻을 수 있었다. 하지만, 색상정보를 이용하기 때문에 조명에 의한 색상변화에 한계가 있었다.

  • PDF

Unsupervised Motion Pattern Mining for Crowded Scenes Analysis

  • Wang, Chongjing;Zhao, Xu;Zou, Yi;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권12호
    • /
    • pp.3315-3337
    • /
    • 2012
  • Crowded scenes analysis is a challenging topic in computer vision field. How to detect diverse motion patterns in crowded scenarios from videos is the critical yet hard part of this problem. In this paper, we propose a novel approach to mining motion patterns by utilizing motion information during both long-term period and short interval simultaneously. To capture long-term motions effectively, we introduce Motion History Image (MHI) representation to access to the global perspective about the crowd motion. The combination of MHI and optical flow, which is used to get instant motion information, gives rise to discriminative spatial-temporal motion features. Benefitting from the robustness and efficiency of the novel motion representation, the following motion pattern mining is implemented in a completely unsupervised way. The motion vectors are clustered hierarchically through automatic hierarchical clustering algorithm building on the basis of graphic model. This method overcomes the instability of optical flow in dealing with time continuity in crowded scenes. The results of clustering reveal the situations of motion pattern distribution in current crowded videos. To validate the performance of the proposed approach, we conduct experimental evaluations on some challenging videos including vehicles and pedestrians. The reliable detection results demonstrate the effectiveness of our approach.

휴먼 모션 분석을 통한 이벤트 검출 및 인식 (Vision-based human motion analysis for event recognition)

  • 최요환;이창우
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제39차 동계학술발표논문집 16권2호
    • /
    • pp.219-222
    • /
    • 2009
  • 최근 컴퓨터비젼 분야에서 이벤트 검출 및 인식이 활발히 연구되고 있으며, 도전적인 주제들 중 하나이다. 이벤트 검출 기술들은 많은 감시시스템들에서 유용하고 효율적인 응용 분야이다. 본 논문에서는 사무실 환경에서 발생할 수 있는 이벤트의 검출 및 인식을 위한 방법을 제안한다. 제안된 방법에서의 이벤트는 입장( entering), 퇴장(exiting), 착석(sitting-down), 기립(standing-up)으로 구성된다. 제안된 방법은 하드웨어적인 센서를 사용하지 않고, MHI(Motion History Image) 시퀀스(sequence)를 이용한 인간의 모션 분석을 통해 이벤트를 검출할 수 있는 방법이며, 사람의 체형과 착용한 옷의 종류와 색상, 그라고 카메라로부터의 위치관계에 불변한 특성을 가진다. 에지검출 기술을 HMI 시퀀스정보와 결합하여 사람 모션의 기하학적 특징을 추출한 후, 이 정보를 이벤트 인식의 기본 특징으로 사용한다. 제안된 방법은 단순한 이벤트 검출 프레임웍을 사용하기 때문에 검출하고자 하는 이벤트의 설명만을 첨가하는 것으로 확장이 가능하다. 또한, 제안된 방법은 컴퓨터비견 기술에 기반한 많은 감시시스템에 적용이 가능하다.

  • PDF

운동 히스토리 영상을 활용한 CamShift 기반 손 추적 기법 (Hand Tracking based on CamShift using Motion History Image)

  • 길종인;김미나;황환규;김만배
    • 방송공학회논문지
    • /
    • 제22권2호
    • /
    • pp.182-192
    • /
    • 2017
  • 본 논문에서는 컬러와 운동 정보를 혼합한 손 추적 시스템을 제안하고자 한다. 손의 검출 및 추적은 많은 경우 피부색을 모델링하여 검출을 하는 방식을 사용한다. 하지만 이와 같은 방법으로는 빛이나 주변 사물에 의해 영향을 많이 받기 때문에 정확한 값을 일정하게 도출해 낼 수 없었다. 또한, 피부색에 의존하므로, 손뿐만 아니라 얼굴 및 비부 색과 비슷한 색을 갖는 배경 등에 의해 추적이 방해받을 수 있다. 이에 본 논문은 운동 히스토리 기법(MHI)을 이용하여 움직임을 파악한 후 이를 CamShift와 결합함으로서, 효과적으로 추적할 수 있도록 설계하였다. 제안된 시스템은 C/C++을 기반으로 구현하였으며, 실험에서 제안 방법이 안정적이고 우수한 성능을 보여줌을 증명하였다.

시공간 템플릿과 컨볼루션 신경망을 사용한 깊이 영상 기반의 사람 행동 인식 (Depth Image-Based Human Action Recognition Using Convolution Neural Network and Spatio-Temporal Templates)

  • 음혁민;윤창용
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1731-1737
    • /
    • 2016
  • In this paper, a method is proposed to recognize human actions as nonverbal expression; the proposed method is composed of two steps which are action representation and action recognition. First, MHI(Motion History Image) is used in the action representation step. This method includes segmentation based on depth information and generates spatio-temporal templates to describe actions. Second, CNN(Convolution Neural Network) which includes feature extraction and classification is employed in the action recognition step. It extracts convolution feature vectors and then uses a classifier to recognize actions. The recognition performance of the proposed method is demonstrated by comparing other action recognition methods in experimental results.