• Title/Summary/Keyword: MHD

Search Result 350, Processing Time 0.026 seconds

Implementation of Electronic Ballast for Metal Halide Discharge Lamp (메탈 핼라이드 램프용 안정기의 구현)

  • Park, Jae-Uk;Kim, Dong-Hee;Shin, Woo-Chol;Nam, Seung-Sik;Won, Jae-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.9-16
    • /
    • 2005
  • In this paper, electronic ballast using double resonant inverter for 250[W] MHD lamp is designed and implemental Electronic ballast reduce a turn-onion loss by using ZVS(Zero Voltage Switching) technic in the double resonant inverter, and when circuit have an analysis, the characteristic evaluations is described generally by using the normalized i:ぉ used numerical analysis. We conform a rightfulness of theoretical analysis by experimental waveforms, rouble resonant inverter for 250[W]) MHD lamp is operated safely.

Statistical study of turbulence from polarized synchrotron emission

  • Lee, Hyeseung;Cho, Chungyeon;Lazarian, Alexandre
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.56.1-56.1
    • /
    • 2017
  • When turbulent motions perturb magnetic field lines and produce magnetic fluctuations, the perturbations leave imprints of turbulence statistics on magnetic field. Observation of synchrotron radiation is one of the easiest ways to study turbulent magnetic field. Therefore, we study statistical properties of synchrotron polarization emitted from media with magnetohydrodynamic (MHD) turbulence, using both synthetic and MHD turbulence simulation data. First, we obtain the spatial spectrum and its derivative with respect to wavelength of synchrotron polarization arising from both synchrotron radiation and Faraday rotation. The study of spatial spectrum shows how the spectrum is affected by Faraday rotation and how we can recover the statistics of underlying turbulent magnetic field as well as turbulent density of electrons from interferometric observations that incorporate the effects of noise and finite telescopic beam size. Second, we study quadrupole ratio to quantitatively describe the degree of anisotropy introduced by magnetic field in the presence of MHD turbulence. We consider the case that the synchrotron emission and Faraday rotation are spatially separated, as well as the situation that the sources of the synchrotron radiation and thermal electrons causing Faraday rotation exist in the same region. In this study, we demonstrate that the spectrum and quadrupole ratio of synchrotron polarization can be very informative tools to get detailed information about the statistical properties of MHD turbulence from radio observations of diffuse synchrotron polarization.

  • PDF

A Preliminary Study of Patchouli Oil Extraction by Microwave Air-Hydrodistillation Method

  • Kusuma, Heri Septya;Altway, Ali;Mahfud, Mahfud
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.510-513
    • /
    • 2017
  • Patchouli oil extraction in general is still using conventional methods that require a long time of extraction. It is therefore necessary to develop extraction methods to obtain patchouli oil with optimum yield and quality. One of the new methods, which has been successfully developed, is microwave hydrodistillation (MHD). In addition to optimizing the extraction process of patchouli oil, this study also used microwave air-hydrodistillation (MAHD). Based on the research results, extraction using MAHD method can produce higher yield of patchouli oil when compared using MHD method. Also, based on the results of the analysis by GC-MS, extraction using MAHD method can produce quality of patchouli oil that is almost the same when compared using MHD method. This is supported by the results of the analysis by GC-MS, which showed that the content of patchouli alcohol is the main component of patchouli oil, and is almost the same for patchouli oil extracted using MHD method (26.32%) and MAHD method (25.23%).

Three-Dimensional Magnetohydrodynamic Simulations of Nonlinear Field Line Resonances

  • Kim, Kyung-Im;Lee, Dong-Hun;Ryu, Dong-Su
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • Field line resonances (FLRs) observed in the magnetosphere often have the amplitude of a few nT, which indicates that dB/B roughly satisfies ~0.01. It is well known that the FLRs are excited by compressional waves via mode conversion, but there has been no apparent criterion on the maximum amplitude in the regime of linear approximations. Such limited range of amplitude should be understood by including nonlinear saturation of FLRs, which has not been examined until now. In this study, using a three-dimensional magnetohydrodynamic (MHD) simulation code, we examine the evolution of nonlinear field line resonances (FLRs) in the cold plasmas. The MHD code used in this study allows a full nonlinear description and enables us to study the maximum amplitude of FLRs. When the disturbance is sufficiently small, it is shown that linear properties of MHD wave coupling are well reproduced. In order to examine a nonlinear excitation of FLRs, it is shown how these FLRs become saturated as the initial magnitude of disturbances is assumed to increase. Our results suggest that the maximum amplitude of FLRs become saturated at the level of the same order of dB/B as in observations. In addition, we discuss the role of both linear terms and nonlinear terms in the MHD wave equations.

  • PDF

Ideal MHD Beta Limit for Optimum Stable Operation of Axisymmetric Tokamak Reactor with a Circular Cross Section (원형 단면을 가진 축대칭형 토카막 핵융합로의 최적운전을 위한 이상적 자기유체역학 안전성을 유지하는 베타값의 최대한계)

  • Lee, Hyoung-Koo;Hong, Sang-Hee
    • Nuclear Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.32-39
    • /
    • 1989
  • A method for determining the optimum ideal MHD $\beta$limit and the operation conditions is presented for an axisymmetric tokamak reactor with a circular cross section. The $\beta$limit is calculated under the constraints of ideal MHD instability criteria with varying the operation conditions which depend on the toroidal current density distributions. Semiempirical laws deduced from experimental observations are used for the toroidal current density distributions. Analytic derivations of various equations required to determine the $\beta$limit are carried out from the empirical equations. Various distributions of the $\beta$limit are obtained by the numerical calculations for different distributions of the toroidal current density. The resulting values of the maximum $\beta$limited by ideal MHD instabilities are expressed by a scaling law in terms of the tokamak geometry and the safety factor.

  • PDF

MHD Turbulence in ISM and ICM

  • Cho, Hyunjin;Kang, Hyesung;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.47.2-47.2
    • /
    • 2019
  • Observations indicate that turbulence in molecular clouds of the interstellar medium (ISM) is highly supersonic (M >> 1) and strongly magnetized (β ≈ 0.1), while in the intracluster medium (ICM) it is subsonic (M <~1) and weakly magnetized (β ≈ 100). Here, M is the turbulent Mach number and β is the ratio of the gas to magnetic pressures. Although magnetohydrodynamic (MHD) turbulence in such environments has been previously studied through numerical simulations, some of its properties as well as its consequences are not yet fully described. In this talk, we report a study of MHD turbulence in molecular clouds and the ICM using a newly developed code based the high-order accurate, WENO (Weighted Essentially Non-Oscillatory) scheme. The simulation results using the WENO code are generally in agreement with those presented in the previous studies with, for instance, a TVD code (Porter et al. 2015 &, Park & Ryu 2019), but reveal more detailed structures on small scales. We here present and compare the properties of simulated turbulences with WENO and TVD codes, such as the spatial distribution of density, the density probability distribution functions, and the power spectra of kinetic and magnetic energies. We also describe the populations of MHD shocks and the energy dissipation at the shocks. Finally, we discuss the implications of this study on star formation processes in the ISM and shock dissipation in the ICM.

  • PDF

A Study on the MHD Micropump with Mixing Function (혼합 기능을 갖는 마이크로 펌프의 연구)

  • Choi, Bum-Kyoo;Kang, Ho-Jin;Kim, Min-Sock
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.579-586
    • /
    • 2010
  • With the development of micrototal analysis systems (${\mu}TAS$), which is a result of enhancement of MEMS technology, rapid progress has been achieved in medical and biological research. The study of lab-on-a-chip (LOC) devices, which are types of ${\mu}TAS$ and which integrate the functions of mixing and analyzing tiny amounts of samples and reagents on one chip, has actively progressed. An LOC comprises microfluidic components such as micromixers and micropumps. Because the flow in a microfluidic system is generally laminar, it is very difficult to efficiently mix and feed fluid reagents. This paper presents the design and the method of fabrication of an MHD micropump for mixing fluids. By using this micropump, fluids are simultaneously mixed and pumped; this is achieved by coupling the Lorentz force and force exerted by an electric charge moving in an electric field.

Effects of Medicinal Herbal Drink on Alcohol Metabolic Enzyme in Drunken Rats (한약재 추출물 함유 음료가 알코올 투여 흰쥐의 알코올 대사 관련 효소에 미치는 영향)

  • Hwang, Su-Jung;Choi, Hye-Min;Park, Hyun-Jin;Lee, Jin-Sang;Heo, Dam;Kim, Mi-Ryeo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.4
    • /
    • pp.610-615
    • /
    • 2010
  • Alcohol is the most widely psychoactive drug and has known in almost all civilization since ancient time. Recently increase consuming alcoholic beverages, alcohol is on of the major public health problems in the world. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) play important roles in the metabolism of alcohols and aldehydes. The drink consists of medicinal herbs, Puerariae Radix, Phyllostachyos Folium, Citri Pericarpium, Polygonati Rhizoma, Rehmanniae Rhizoma (Vinegar), which have been widely used in oriental medicine. This study was designed to investigate effects of medicinal herbal drink (MHD) on alcohol metabolism in drunken SD rats subjects. In experiment, rats were treated to ethanol (EtOH, 3 g/kg, PO) at 60 min. after saline (CON) or MHD (1 ml/kg, PO) administration. The blood alcohol concentration (BAC), blood acetaldehyde concentration (BALC) activities of ADH, ALDH, AST and ALT were significantly decreased in MHD group than in control group as a time-dependent manner. And drinking water volume in MHD group with duplicate treatment, were significantly decreased than in CON group. These results suggested that MHD intake could give an influence upon the reduction in BAC and BALC may alleviate acute ethanol-induced hepatotoxicity by altering alcohol metabolic enzyme activities.

ANALYSES OF ANNULAR LINEAR INDUCTION PUMP CHARACTERISTICS USING A TIME-HARMONIC FINITE DIFFERENCE ANALYSIS

  • Seong, Seung-Hwan;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.213-224
    • /
    • 2008
  • The pumping of coolant in a liquid metal fast reactor may be performed with an annular linear induction electro-magnetic (EM) pump. Linear induction pumps use a traveling magnetic field wave created by poly-phase currents, and the induced currents and their associated magnetic field generate a Lorentz force, whose effect can be the pumping of the liquid metal. The flow behaviors in the pump are very complex, including a time-varying Lorentz force and pressure pulsation, because an induction EM pump has time-varying magnetic fields and the induced convective currents that originate from the flow of the liquid metal. These phenomena lead to an instability problem in the pump arising from the changes of the generated Lorentz forces along the pump's geometry. Therefore, a magneto-hydro-dynamics (MHD) analysis is required for the design and operation of a linear induction EM pump. We have developed a time-harmonic 2-dimensional axisymmetry MHD analysis method based on the Maxwell equations. This paper describes the analysis and numerical method for obtaining solutions for some MHD parameters in an induction EM pump. Experimental test results obtained from an induction EM pump of CLIP-150 at the STC "Sintez," D.V. Efremov Institute of Electro-physical Apparatus in St. Petersburg were used to validate the method. In addition, we investigated some characteristics of a linear induction EM pump, such as the effect of the convective current and the double supply frequency (DSF) pressure pulsation. This simple model overestimated the convective eddy current generated from the sodium flow in the pump channel; however, it had a similar tendency for the measured data of the pump performance through a comparison with the experimental data. Considering its simplicity, it could be a base model for designing an EM pump and for evaluating the MHD flow in an EM pump.

Development of Small Performance Test Device for Helical-Type Magnetohydrodynamic (MHD) Seawater Propulsion Thruster (헬리컬형 자기유체역학(MHD) 해수 추진기 소형 성능시험장치 개발)

  • Chang, Doo-Hee;Jo, Jong Gab;Chang, Dae-Sik;Kim, Sun-Ho;Jin, Jeong-Tae;Ryu, Chang-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.46-54
    • /
    • 2022
  • A magnetohydrodynamic (MHD) seawater propulsion thruster has been proposed to reduce propeller noise, propeller pitting, and vessel vibration originated from the propeller cavitation. The MHD thruster was also focused to overcome the limitation of propulsion velocity for the special purpose of marine ships. The research trends and key technologies in the worldwide leading countries are reviewed for the development of MHD propulsion thrusters in Korea. A small performance test device was developed firstly with a conventional solenoid magnet of ≤0.6 Tesla and a helical-type cylindrical duct(inner diameter of 5 cm) of thruster. The artificial seawater was fabricated by a salt solution including a conductivity of 5~6 S/m. The measured flow velocity of artificial seawater in the test device was 0.03~0.42 m/s (0.06~0.84 Knot) with a magnetic field strength of 0.6 Tesla and the applied currents of 10~80 A including the change of anode materials. It was found that the flow direction of seawater was reversed by the directional change of applied current in the solenoid magnet.