• Title/Summary/Keyword: MHD

Search Result 350, Processing Time 0.036 seconds

REMARKS ON LIOUVILLE TYPE THEOREMS FOR THE 3D STATIONARY MHD EQUATIONS

  • Li, Zhouyu;Liu, Pan;Niu, Pengcheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1151-1164
    • /
    • 2020
  • The aim of this paper is to establish Liouville type results for the stationary MHD equations. In particular, we show that the velocity and magnetic field, belonging to some Lorentz spaces, must be zero. Moreover, we also obtain Liouville type theorem for the case of axially symmetric MHD equations. Our results generalize previous works by Schulz [14] and Seregin-Wang [18].

An Overview of Magnetohydrodynamic Ship Propulsion with Superconducting Magnets

  • Kong, Yeong-Kyung
    • Journal of Energy Engineering
    • /
    • v.2 no.2
    • /
    • pp.231-236
    • /
    • 1993
  • The feasibility of Magnetohydrodynamic(MHD) Ship Propulsion using Superconduction Magnets is reviewed in light of relent advances in high-temperature superconducting. The propulsion using a screw propeller in the noise reduction has it's own limitation. The epochal noiseless MHD propulsion method which does not have this disadvantage is studying nowadays. The subject of a marine MHD as propulsion has been examined before and was found to be interesting because of relatively low magnetic flux densities. It is demonstrated that the MHD propulsion is technically interesting with high magnetic flux density. The development of large-scale magnets using the high-temperature superconductor now under development could make it practical to construct submersibles for high-speed and silent operation.

  • PDF

Magnetohydrodynamic Ship Propulsion with Superconduction Magnets (초전도 자석을 이용한 전자유체(MHD) 추진)

  • 공영경;최태인;김윤식;노창주
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1992.11a
    • /
    • pp.35-38
    • /
    • 1992
  • The feasibility of magnetohydrodynamic (MHD) Ship propulsion using superconduction magnets is reviewed in light of recent advances in high-temperature superconducting. The propulsion using a screw propeller in the noise reduction has it's own limitation. The epochal noiseless MHD propulsion method which does not have this disadvantage is studying nowadays. The subject of a marine MHD as propulsion has been examined before and was found to be interesting because of relatively low magnetic flux densities. It is demonstrated that the MHD propulsion is technically interesting with high magnetic flux density. The development of large-scale magnets using the high-temperature superconductors now under development could make it practical to construct submersibles for high-speed and silent operation.

  • PDF

MHD WAVE ENERGY FLUXES GENERATED FROM CONVECTION ZONES OF LATE TYPE STARS

  • Moon, Yong-Jae;Yun, Hong-Sik
    • Journal of The Korean Astronomical Society
    • /
    • v.24 no.2
    • /
    • pp.129-149
    • /
    • 1991
  • An attempt has been made to examine the characteristics of acoustic and MHD waves generated in stellar convection zones($4000\;K\;{\leq}\;T_{eff}\;{\leq}\;7000\;K$, $3\;{\leq}\;\log\;g\;{\leq}\;4.5$). With the use of wave generation theories formulated for acoustic waves by Stein (1967), for MHD body waves by Musielak and Rosner (1987, 1988) and for MHD tube waves by Musielak et al.(l989a, 1989b), the energy fluxes are calculated and their dependence on effective temperature, surface gravity and megnetic field strength are analyzed by optimization techniques. In computing magneto-convection models, the effect of magnetic fields on the efficiency of convection has been taking into account by extrapolating it from Yun's sunspot models(1968; 1970). Our study shows that acoustic wave fluxes are dominant in F and G stars, while the MHD waves dominant in K and M stars, and that the MHD wave fluxes vary as $T_{eff}^4{\sim}T_{eff}^7$ in contrast to the acoustic fluxes, as $T_{eff}^{10}$. The gravity dependence, on the other hand, is found to be relatively weak; the acoustic wave fluxes ${\varpropto}\;g^{-0.5}$, the longitudinal tube wave fluxes ${\varpropto}\;g^{0.3}$ and the transverse tube wave fluxes ${\varpropto}\;g^{0.3}$. In the case of the MHD body waves their gravity dependence is found to be nearly negligible. Finally we assesed the computed energy fluxes by comparing them with the observed fluxes $F_{ob}$ of CIV(${\lambda}1549$) lines and soft X-rays for selected main sequence stars. When we scaled the corrected wave fluxes down to $F_{ob}$, it is found that these slopes are almost in line with each other.

  • PDF

Automatic real-time system of the global 3-D MHD model: Description and initial tests

  • Park, Geun-Seok;Choi, Seong-Hwan;Cho, Il-Hyun;Baek, Ji-Hye;Park, Kyung-Sun;Cho, Kyung-Suk;Choe, Gwang-Son
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.26.2-26.2
    • /
    • 2009
  • The Solar and Space Weather Research Group (SOS) in Korea Astronomy and Space Science Institute (KASI) is constructing the Space Weather Prediction Center since 2007. As a part of the project, we are developing automatic real-time system of the global 3-D magnetohydrodynamics (MHD) simulation. The MHD simulation model of earth's magnetosphere is designed as modified leap-frog scheme by T. Ogino, and it was parallelized by using message passing interface (MPI). Our work focuses on the automatic processing about simulation of 3-D MHD model and visualization of the simulation results. We used PC cluster to compute, and virtual reality modeling language (VRML) file format to visualize the MHD simulation. The system can show the variation of earth's magnetosphere by the solar wind in quasi real time. For data assimilation we used four parameters from ACE data; density, pressure, velocity of solar wind, and z component of interplanetary magnetic field (IMF). In this paper, we performed some initial tests and made a animation. The automatic real-time system will be valuable tool to understand the configuration of the solar-terrestrial environment for space weather research.

  • PDF

An MHD Simulation of the X2.2 Solar Flare on 2011 February 15

  • Inoue, Satoshi;Choe, Gwangson
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.69.1-69.1
    • /
    • 2014
  • We perform an MHD simulation combined with observed vector field data to clarify an eruptive dynamics in the solar flare. We first extrapolate a 3D coronal magnetic field under a Nonlinear Force-Free Field (NLFFF) approximation based on the vector field, and then we perform an MHD simulation where the NLFFF prior to the flare is set as an initial condition. Vector field was obtained by the Soar Dynamics Observatory (SDO) at 00:00 UT on February 15, which is about 90 minutes before the X2.2-class flare. As a result, the MHD simulation successfully shows an eruption of strongly twisted lines whose values are over one-turn twist, which are produced through the tether-cut magnetic reconnection in strongly twisted lines of the NLFFF. Eventually, we found that they exceed a critical height at which the flux tube becomes unstable to the torus instability determining the condition that whether a flux tube might escape from the overlying field lines or not. In addition to these, we found that the distribution of the observed two-ribbon flares is similar to the spatial variance of the footpoints caused by the reconnection of the twisted lines being resided above the polarity inversion line. Furthermore, because the post flare loops obtained from MHD simulation well capture that in EUV image taken by SDO, these results support the reliability of our simulation.

  • PDF

Two-dimensional Numerical Simulation of a Pulsed Heat Source High Temperature Inert Gas Plasma MHD Electrical Power Generator

  • Matsumoto, Masaharu;Murakami, Tomoyuki;Okuno, Yoshihiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.589-596
    • /
    • 2008
  • Performance of a pulsed heat source high temperature inert gas plasma MHD electrical power generator, which can be one of the candidates of space-based laser-to-electrical power converter, is examined by a time dependent two dimensional numerical simulation. In the present MHD generator, the inert gas is assumed to be ideally heated to about $10^4K$ pulsed-likely within short time(${\sim}1{\mu}s$) in a stagnant energy input volume, and the energy of high temperature inert gas is converted to the electricity with the medium of pure inert gas plasma without seeding. The numerical simulation results show that an enthalpy extraction ratio(=electrical output energy/pulsed heat energy) of several tens of % can be achieved, which is the same level as the conventional seeded non-equilibrium plasma MHD generator. Although there still exist many phenomena to be clarified and many problems to be overcome in order to realize the system, the pulsed heat source high temperature inert gas MHD generator is surely worth examining in more detail.

  • PDF

Comparison of IHE XDS.b and IHE MHD messages for registering HL7 CDA documents (HL7 CDA 문서 등록을 위한 IHE XDS.b 와 IHE MHD의 메시지 비교)

  • Park, Dongwook;Do, Hyoungho;In, Jungmin;Lee, Sungkee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.796-798
    • /
    • 2012
  • IHE(Integrating the Healthcare Enterprise)에서는 환자의 전자진료기록 공유를 위하여 XDS.b(Cross-Enterprise Document Sharing.b) 프로파일을 개발하였다. 그러나 XDS.b 프로파일의 Document Source와 Document Consumer는 모바일 환경에서는 사용하기에는 부적당하기 때문에 모바일 환경에서 XDS.b infrastructure에 쉽게 접근할 수 있는 MHD(Mobile access to Health Documents) 프로파일을 개발하였다. 본 논문에서는 전자진료기록 표준인 HL7 CDA 문서 등록을 위한 XDS.b Document Source의 Provide and Register Document Set-b[ITI-41] 트랜잭션과 MHD Document Source의 Put Document Dossier[ITI-65] 트랜잭션을 모바일 환경에서 구현하고 메시지의 크기를 비교하였다. 구현된 결과를 통하여 MHD ITI-65 트랜잭션의 메시지 크기가 XDS.b ITI-41 트랜잭션 메시지 보다 80% 정도 감소함을 알 수 있었다.

Numerical analysis of plasma MHD equilibrium (플라즈마 MHD 평형의 수치해석)

  • Lee, Hong-Sik;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.206-209
    • /
    • 1988
  • Fixed boundary MHD static equilibrium for the axisymmetric toroidal plasma is analyzed numerically. The Grad-Shafranov equation is solved using FFM. The toroidal current tenn is expressed by plasma pressure p($\psi$) and toroidal field function g($\psi$). The numerical results are compared to the Solovev analytic equilibrium for the verification of the analysis. For SNUT-79 tokamak device in Seoul National University, flux surfaces and toroidal current profiles according to the variation of p and g profiles are observed. Also the safety factor q and average beta are obtained.

  • PDF