• Title/Summary/Keyword: MFL

Search Result 92, Processing Time 0.032 seconds

강자성 배관의 racetrack 형 결함깊이와 응력이 누설자속에 미치는 영향

  • ;;;D.L. Atherton;L. Clapham
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.118-119
    • /
    • 2002
  • 실시간으로 매설된 송유관이나 가스관의 내부에 누설자속 (Magnetic Flux Leakage: MFL) 탐지용 피그를 통과시킴으로서 부식을 모니터한다[1]. NdFeB 자석과 같은 강한 영구자석으로 배관을 자화시키면 부식에 의한 결함 근처에서 자속이 누설되고, 그 MFL은 Hall 프로브나 유도코일에 의해 탐지된다. 자기이방성을 이용하여 응력에 의만 누설자속신호 변화를 계산할 수 있다. MFL 신호를 정밀하게 분석하기 위해서는 측정프로브의 측정속도와 내부압력응력과 같은 운용조건을 고려하여야 한다[2]. (중략)

  • PDF

Effects of the PIG Draft Velocity on the Defect Signals in MFL NDT System (자기 누설 비파괴 탐상 시스템에서 PIG의 주행속도가 검출신호에 미치는 영향)

  • 박상호;박관수
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.475-483
    • /
    • 2003
  • In this paper, dynamic characteristics of the magnetic flux leakage(MFL) type non-destructive testing(NDT) are analyzed. Effects of a sensor speed in MFL PIG system and remanent magnetization of the gas pipeline are analyzed by using 3 dimensional nonlinear finite element analysis including eddy current and hysteresis characteristics. Results show that the speed of the sensor reduces the magnitude of the sensing signals where as the hysteresis of the pipeline distorts the sensing signals.

DCT based Magnetic Flux Leakage Analysis for Defect Feature Extraction of Gas Pipelines (DCT 기반의 자기 누설 신호 분석을 통한 가스 배관에서의 결함 신호 특징 추출)

  • Han, Byung-Gil;Park, Gwan-Soo;Yoo, Hui-Ryong;Rho, Young-Woo;Choi, Doo-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.359-360
    • /
    • 2006
  • Magnetic Flux Leakage (MFL) methods are widely employed for the non-destructive testing of gas pipelines. In the application of MFL pipeline inspection technology, corrosion anomalies are detected and identified via their leakage filed due to changes in wall thickness. This paper presents discrete cosine transform (DCT) based MFL signal analysis for defect feature extraction of natural gas pipelines. The original MFL signals are transformed into new ones based on the analysis. The usefulness of the approach has been shown by the experimental results.

  • PDF

Gaussian Variance Filtering for Automatic Inspection of Gas Pipelines using Magnetic Flux Leakage Signal (가스 배관 자동 검사를 위한 자기 누설 신호의 가우시안 분산 필터링)

  • Han, Byung-Gil;Lee, Min-Ho;Cho, Sung-Ho;Rho, Young-Woo;Choi, Doo-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.361-362
    • /
    • 2006
  • Magnetic Flux Leakage (MFL) inspection is a general non-destructive testing (NDT) method to detect the corrosion of natural gas pipelines. Currently, it is subjectively analyzed by trained analysts. In spite of investing much time and human resources, the inspection results may be different according to the analysts' expertise. So, many gas suppliers are keenly interested in the automation of the interpretation process. This paper presents a Gaussian variance filtering method of MFL signals, which is taken from MFL pigging of underground pipelines. In the proposed algorithm the original MFL signals are filtered by multiple Gaussians with different variance. Experimental results show that this approach does not need to align bias and to use explicit noise reduction algorithm.

  • PDF

The Study on the Magneization of Gas Pipliles according to Distortion and Compensation of Measured Signals in MFL System (자기누설 탐상시스템에서 가스관의 착자에 의한 탐상신호 왜곡 및 보상에 관한 연구)

  • Park S. H.;Seo K.;Jung H. W.;Park G. S.;Han S. J.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1004-1006
    • /
    • 2004
  • MFL PIG는 빠른 속도로 주행하면서 MFL 신호를 측정하여 기록하게 된다. PIG가 주행함에 따라 MFL 신호를 왜곡시키는데 가스관에 인가되는 강한 자기장으로 인하여 가스관이 착자되어 왜곡이 발생한다. 가스관의 착자는 종방향 착자와 횡방향 착자로 나눌수 있으며, 횡방향 착자는 검출신호를 증가시키거나 감소시키는 방향으로 왜곡을 발생시키고, 종방향 착자는 인가돼는 자기장과 수직이 되므로 검출신호를 크게 왜곡시킨다. 따라서 검출신호를 보정하여 실제 결함에 의한 신호를 검출하여야 한다. 본 연구에서는 가스관의 착자에 의한 영향을 분석하고 신호보정에 관하여 연구하였다.

  • PDF

Implementation of a Modified SQI for the Preprocessing of Magnetic Flux Leakage Signal

  • Oh, Bok-Jin;Choi, Doo-Hyun
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.357-360
    • /
    • 2013
  • A modified SQI method using magnetic leakage flux (MFL) signal for underground gas pipelines' defect detection and characterization is presented in this paper. Raw signals gathered using MFL signals include many unexpected noises and high frequency signals, uneven background signals, signals caused by real defects, etc. The MFL signals of defect free pipelines primarily consist of two kinds of signals, uneven low frequency signals and uncertain high frequency noises. Leakage flux signals caused by defects are added to the case of pipelines having defects. Even though the SQI (Self Quotient Image) is a useful tool to gradually remove the varying backgrounds as well as to characterize the defects, it uses the division and floating point operations. A modified SQI having low computational complexity without time-consuming division operations is presented in this paper. By using defects carved in real pipelines in the pipeline simulation facility (PSF) and real MFL data, the performance of the proposed method is compared with that of the original SQI.

Analysis of the characteristics about defect signal of MFL type NDT System for Inspecting City Gas Pipelines (도시가스 배관 검사용 자기누설 비파괴검사 시스템의 결함 검출신호 특성 분석)

  • Kim, Hui Min;Yoo, Hui Ryong;Rho, Yong Woo;Park, Gwan Soo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.868-869
    • /
    • 2015
  • 지하 매설된 가스배관을 정기적으로 검사하기 위해서 가스 공급 및 용역업체에서는 주로 비피과검사 탐상장비인 MFL(Magnetic Flux Leakage) PIG(Pipeline Inspection Gauge)를 사용한다. 기존의 MFL PIG는 배관 내 유체(가스,오일 등)의 전후차단 압력의 흐름을 이용해 별도의 구동장치 없이 피그를 진행시켜 배관의 결함 유무를 평가하는 시스템이다. 하지만 10기압 이하의 낮은 운영압력과 T 분기관과 같이 급격한 곡관부가 존재하는 직경 16인치 이하의 도시가스 배관에는 기존의 시스템을 적용하기 어렵다. 이처럼 기존 MFL PIG의 적용이 불가한 도시가스 배관(직경 16인치 이하)을 활주하기 위해서는 우선 비파괴검사 시스템을 견인할 수 있는 추진 로봇이 필요하고 추진로봇에 적합한 자기누설 비파괴검사 시스템의 개발이 필요하다. 또한 비파괴검사 장비의 센서 시스템은 결함신호를 탐지하여 결함의 발생유무 및 결함의 형상을 판별하는 성능도 중요하다. 본 논문에서는 16인치 도시가스 배관의 검사를 위한 자기누설 비파괴검사 시스템의 기초설계와 대상 시스템의 자기적 특성을 분석한다. 또한 배관 외벽의 결함 발생 유무에 따른 자기누설 신호의 크기 및 분포변화를 3차원 유한요소법을 이용해 해석하여, 결함 검출 신호의 특성을 분석하는데 초점을 둔다.

  • PDF

Time dependent numerical simulation of MFL coil sensor for metal damage detection

  • Azad, Ali;Lee, Jong-Jae;Kim, Namgyu
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.727-735
    • /
    • 2021
  • Recently, non-destructive health monitoring methods such as magnetic flux leakage (MFL) method, have become popular due to their advantages over destructive methods. Currently, numerical study on this field has been limited to simplified studies by only obtaining MFL instead of induced voltage inside coil sensor. In this study, it was proposed to perform a novel numerical simulation of MFL's coil sensor by considering vital parameters including specimen's motion with constant velocity and saturation status of specimen in time domain. A steel-rod specimen with two stepwise cross-sectional changes (i.e., 21% and 16%) was fabricated using low carbon steel. In order to evaluate the results of numerical simulation, an experimental test was also conducted using a magnetic probe, with same size specimen and test parameters, exclusively. According to comparative results of numerical simulation and experimental test, similar signal amplitude and signal pattern were observed. Thus, proposed numerical simulation method can be used as a reliable source to check efficiency of sensor probe when different size specimens with different defects should be inspected.

Performance Comparison of Pipeline Defects' Length Estimation Using MFL Signals (자기 누설 신호를 이용한 배관 결함의 길이 추정 성능 비교)

  • Kim, Tae-Wook;Rho, Yong-Woo;Choi, Doo-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.108-113
    • /
    • 2009
  • MFL(magnetic flux leakage) inspection is a general method of non-destructive evaluation(NDE) of underground gas pipelines. Pipelines are magnetized by permanent magnets when MFL PIG(pipeline inspection gauge) gets through them. If defects or corrosions exist in pipelines, effective thickness is changed and thus variation of leakage flux occurs. The leakage flux signals detected by hall-sensors are analyzed to characterize defect's geometries such as length, width, depth, and so on. This paper presents several methods for estimating defect's length using MFL signals and their performances are compared for real defects carved in KOGAS pipeline simulation facility. It is found that 80% and 90% of minimum values for axial and peak values for radial signals respectively show the best performance in the point of length estimation error.

Field Application of a Cable NDT System for Cable-Stayed Bridge Using MFL Sensors Integrated Climbing Robot (누설자속센서를 탑재시킨 이동로봇을 이용한 사장교 케이블 비파괴검사 시스템의 현장 적용)

  • Kim, Ju-Won;Choi, Jun-Sung;Lee, Eun-Chan;Park, Seung-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.60-67
    • /
    • 2014
  • In this study, an automated cable non-destructive testing(NDT) system was developed to monitor the steel cables that are a core component of cable-stayed bridges. The magnetic flux leakage(MFL) method, which is suitable for ferromagnetic continuum structures and has been verified in previous studies, was applied to the cable inspection. A multi-channel MFL sensor head was fabricated using hall sensors and permanent magnets. A wheel-based cable climbing robot was fabricated to improve the accessibility to the cables, and operating software was developed to monitor the MFL-based NDT research and control the climbing robot. Remote data transmission and robot control were realized by applying wireless LAN communication. Finally, the developed element techniques were integrated into an MFL-based cable NDT system, and the field applicability of this system was verified through a field test at Seohae Bridge, which is a typical cable-stayed bridge currently in operation.