• Title/Summary/Keyword: MFDS

Search Result 132, Processing Time 0.015 seconds

Investigation on Pesticide Residues in Agricultural Products in Domestic Markets Using LC-MS/MS and GC-MS/MS (LC-MS/MS 및 GC-MS/MS를 이용한 국내 유통 농산물 중 잔류농약 실태조사)

  • Ji-Yeon Bae;Da-Young Yun;Nam Suk Kang;Won Jo Choe;Yong-Hyeon Jeong;Gui Hyun Jang;Guiim Moon
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.3
    • /
    • pp.131-139
    • /
    • 2023
  • In this study, we investigated pesticide residue levels in 535 domestically distributed agricultural products in South Korea using multi-residue analysis. Agricultural products from 13 regions, including Seoul, were pretreated using QuEChERS and d-SPE, and subsequently analyzed using LC-MS/MS and GC-MS/MS. Residual pesticides were detected in 288 (53.8%) out of the 535 samples, including 40 of apples, 40 of peppers, 33 of mandarins, 31 of peaches, and 144 other commodities. Furthermore, one sample of Korean cabbage exceeded the permitted maximum residue limit (MRL), diniconazole (0.18 mg/kg), detected at about twice the MRL. In total, 91 types of residual pesticides were detected, including fungicides (42), insecticides (48), and a nematicide. The most frequently detected pesticides were dinotefuran (91), carbendazim (75), tebuconazole (61), and pyraclostrobin (59). Our results showed that continuous monitoring of agricultural products is necessary.

Development and Validation of an Analytical Method for Fungicide Fluoxastrobin Determination in Agricultural Products (농산물 중 살균제 Fluoxastrobin의 시험법 개발 및 유효성 검증)

  • So Eun, Lee;Su Jung, Lee;Sun Young, Gu;Chae Young, Park;Hye-Sun, Shin;Sung Eun, Kang;Jung Mi, Lee;Yun Mi, Chung;Gui Hyun, Jang;Guiim, Moon
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.6
    • /
    • pp.373-384
    • /
    • 2022
  • Fluoxastrobin a fungicide developed from Strobilurus species mushroom extracts, can be used as an effective pesticide to control fungal diseases. In this study, we optimized the extraction and purification of fluoxastrobin according to its physical and chemical properties using the QuEChERS method and developed an LC-MS/MS-based analysis method. For extraction, we used acetonitrile as the extraction solvent, along with MgSO4 and PSA. The limit of quantitation of fluoxastrobin was 0.01 mg/kg. We used 0.01, 0.1, and 0.5 mg/kg of five representative agricultural products and treated them with fluoxastrobin. The coefficients of determination (R2) of fluoxastrobin and fluoxastrobin Z isomer were > 0.998. The average recovery rates of fluoxastrobin (n=5) and fluoxastrobin Z isomer were 75.5-100.3% and 75.0-103.9%, respectively. The relative standard deviations (RSDs) were < 5.5% and < 4.3% for fluoxastrobin and fluoxastrobin Z isomer, respectively. We also performed an interlaboratory validation at Gwangju Regional Food and Drug Administration and compared the recovery rates and RSDs obtained for fluoxastrobin and fluoxastrobin Z isomer at the external lab with our results to validate our analysis method. In the external lab, the average recovery rates and RSDs of fluoxastrobin and fluoxastrobin Z isomer at each concentration were 79.5-100.5% and 78.8-104.7% and < 18.1% and < 10.2%, respectively. In all treatment groups, the concentrations were less than those described by the 'Codex Alimentarius Commission' and the 'Standard procedure for preparing test methods for food, etc.'. Therefore, fluoxastrobin is safe for use as a pesticide.