• Title/Summary/Keyword: MFA (material flow analysis)

Search Result 12, Processing Time 0.035 seconds

Material Flow Analysis and its Implication for Sustainability Policy (물질흐름분석(MFA)의 의의와 정책적 함의)

  • Cho, Young-Tak;Choi, Jung-Su
    • Journal of Environmental Policy
    • /
    • v.5 no.2
    • /
    • pp.1-26
    • /
    • 2006
  • This paper reveals Material Flow Analysis(MFA) has the possibility of reconciling the two contending theoretical viewpoints(weak sustainability v.s. strong sustainability) and thereby makes the concept of sustainability useful at operational level. For this purpose, this paper shows that the theoretical logic of MFA can be applied from national level to product level (EW-MFA, PIOT/NAMEA, LCI), and investigates the meanings and policy implications of MFA at each level.

  • PDF

Modeling of Eco-Industrial Park (EIP) through Material Flow Analysis (MFA) (물질흐름분석을 통한 생태산업단지의 모델링)

  • Lee, Seungjun;Yoo, ChangKyoo;Choi, Sang Kyo;Chun, Hee Dong;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.579-587
    • /
    • 2006
  • Recently, each country has been trying to promote Eco-Industrial Park (EIP) development for industrial sustainability. Technological modeling is required to realize EIP practically even though the project contains the political concerns for many companies, government, and self-governing bodies. The four main technologies of the EIP developments include energy exchange, material flow analysis, water pinch, and life cycle assessment. Material flow analysis (MFA) methodology can be utilized in EIP modeling in view of the fact that the analysis of material flows and the optimized modeling are major purposes for the technological modeling of EIP. Through MFA methodology in POHANG EIP project, how to apply MFA modeling to EIP modeling and how to utilize software for MFA modeling are shown in this research.

A Study on the Expert System for Food Wastes Reduction using MFA (물질흐름분석(MFA)을 활용한 주방 음식물쓰레기 저감 전문가시스템)

  • Kim, Kwang-Man
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.245-251
    • /
    • 2013
  • In this paper, the expert system to reduce the amount of food waste is proposed. The method of material flow analysis (MFA) is applied. Proper handling of waste beyond the terms of the need for proactive research been mentioned before, but actually cause the waste generator research focuses on consumer behavior and the business community to analyze the flow of materials within the study are insufficient. In this paper, the type of food consumption and food waste, look at the relationship between the occurrence of secondary schools in the diet is provided for students to examine the preferences of the target model diet expert system was reconfigured. Preference for leaving the food in the diet leads to the important information that is Each diet recipes that make up the target material flow analysis (MFA) was constructed to perform all the database. This database is currently being generated from the rain while cooking diet edible plants and materials to reflect the self-esteem following the recommended diet is used to create. Reducing food waste is actually being used currently in research knowledge to the knowledge base was constructed. Future Home Smart System was developed in conjunction with the system to the user, by providing guidelines for the utilization can be expected.

An Experimental Study on the Rheology Characteristics of Insulating Concrete (단열콘크리트의 레올로지 특성에 관한 실험적 연구)

  • Ryu, Dong-Woo;Ji, Suk-Won;Jeon, Hyun-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.118-124
    • /
    • 2016
  • The purpose of this study is to analyze the rheology characteristics of insulating concrete for each type of insulation performance improvement material and utilize the result as preliminary data for optimal flow designing and pumping analysis. As a result, when lightweight aggregate was mixed, the yield stress decreased significantly, and in case of type 2, the combination of micro form cell admixture (MFA) and calcined diatomite powder (DM) showed the most ideal flow characteristics. In case of type 3, the combination of micro form cell admixture (MFA), calcined diatomite powder (DM) and lightweight aggregate (L) showed the best flow characteristics.

Review of Material Flow Analysis Related Activities of Developed Countries for the Improvement of Resources Efficiency and Sustainability (자원 효율성 및 지속 가능성 증진을 위한 선진국 물질흐름분석 관련활동에 대한 평가)

  • Kim, Seong-Yong
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.615-626
    • /
    • 2006
  • The natural resources and material life-cycle include all human activities related to resources and material extraction, transportation, processing, use, recovery and disposal. Sustainable material management (SMM) is an integrated set of policy approaches targeted on economic agents throughout the material life-cycles and designed to result in economically efficient and environmentally effective material use. The material flows of industrial mineral, ores and fossil fuels have also long been a focal area for environmental policies because of the high environmental pressures associated with extraction, processing, consumption, and final disposal of these materials. OECD work on material flow is to improve the quantitative and analytical knowledge bases about natural resource and material flows within and among countries, so as to better understand the importance of material resources in member countries' economies. In several EU Member States, material flow accounts are part of official statistics. Material flow analysis (MFA) is a valuation method which assesses the efficiency of use of materials using information from material flow accounting. Material flow analysis helps to identify waste of natural resources and other materials in the economy which would otherwise go unnoticed in conventional economic monitoring systems. Resource use and resource efficiency has emerged as a major issue for long-term sustainability and environmental policy.

Estimation of Total Material Requirement in Expressway Construction using Material Flow Analysis which is based on the Life Cycle Assessment (LCA기반 물질흐름분석 기법을 이용한 고속도로 건설에서의 총 자원요구량 산정)

  • Kong, Chan-Hwi;Hwang, Yong-Woo;Moon, Jin-Young;Kwak, In-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.403-410
    • /
    • 2016
  • During expressway construction it has been input a lot of material, but it does not manage to estimate quantitatively. In this study, the total material requirement for construction of expressway, which separated direct material requirement and indirect material requirement each section was quantified by combining life cycle assessment (LCA) and material flow analysis (MFA). In the direct material requirement, sand 2.27E + 04 ton/km, limestone 1.02E + 04 ton/km and gravel 4.47E + 03 ton/km were required, in the indirect material requirement, gravel 2.75E + 04 ton/km, iron 9.80E + 03 ton/km and coal 9.74E + 03 ton/km were required. Material such as sand, limestone which has high direct material requirement is require of excess input prevention from construction site, and material such as iron, rare metals(chrome, nickel) and coal which has high indirect material requirement is require additional studies of resource management.

Modelling Study on Sustainable Resources Management System Using Material Flow Analysis(MFA) in Korea (물질흐름분석을 이용한 국내 지속가능한 자원관리 시스템 모형 연구)

  • Kim, Yu-Jeong;Kim, Seong-Yong;Heo, Eun-Nyeong
    • Economic and Environmental Geology
    • /
    • v.41 no.2
    • /
    • pp.253-265
    • /
    • 2008
  • Sustainable resource management(SRM) is regarded as the core strategy to achieve Dematerialisation and Decoupling of economic growth from the use of natural resources and environmental degradation. This paper presents status SRM policy and research in worldwide, and analyzes decoupling of economic activity from energy consumption of domestic manufacturing, using decoupling factor. Also This paper suggests methodologies and strategies of SRM in Korea. SRM is established through various analysis and survey as following; forecasting of resource demand, material flow analysis and value chain analysis, resource market structure analysis. Through these analysis, we can obtain hot-spot and solution of environmental burden, recycling market management, recycling technology and best-optimal supply rate of primary and secondary resource. In Korea, resource management system must be linked with national and regional material flow analysis, and it is necessary to make SRM-law of national dimension for effective run of sustainable resource management system.

Optimizing Urban Construction and Demolition Waste Management System Based on 4D-GIS and Internet Plus

  • Wang, Huiyue;Zhang, Tingning;Duan, Huabo;Zheng, Lina;Wang, Xiaohua;Wang, Jiayuan
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.321-327
    • /
    • 2017
  • China is experiencing the urbanization at an unprecedented speed and scale in human history. The continuing growth of China's big cities, both in city land and population, has already led to great challenges in China's urban planning and construction activities, such as the continuous increase of construction and demolition (C&D) waste. Therefore, how to characterize cities' construction activities, particularly dynamically quantify the flows of building materials and construction debris, has become a pressing problem to alleviate the current shortage of resources and realize urban sustainable development. Accordingly, this study is designed to employ 4D-GIS (four dimensions-Geographic Information System) and Internet Plus to offer new approach for accurate but dynamic C&D waste management. The present study established a spatio-temporal pattern and material metabolism evolution model to characterize the geo-distribution of C&D waste by combing material flow analysis (MFA) and 4D-GIS. In addition, this study developed a mobile application (APP) for C&D waste trading and information management, which could be more effective for stakeholders to obtain useful information. Moreover, a cloud database was built in the APP to disclose the flows of C&D waste by the monitoring information from vehicles at regional level. To summarize, these findings could provide basic data and management methods for the supply and reverse supply of building materials. Meanwhile, the methodologies are practical to C&D waste management and beyond.

  • PDF

Calculation and Analysis of Actual Recycling Rate and Final Disposal Rate of Industrial Waste by Material Flow Analysis (물질흐름분석을 통한 사업장폐기물의 실제적인 재활용률과 최종처분율의 산정 및 분석)

  • Oh, Gil-Jong;Cho, Yoon-A;Kim, Ji-Yeon;Kim, Ki-Heon
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.785-798
    • /
    • 2018
  • Since the Framework Act on Resource Circulation was enacted in 2018, the government should establish a National Resource Circulation Master Plan every 10 years, which defines mid- to long-term policy goals and directions on the efficient use of resources, prevention of waste generation and recycling of waste. In addition, we must set mid- to long-term and stepwise targets for the final disposal rate, recycling rate (based on sorted recyclable materials and recycled products), and energy recovery rate of wastes, and relevant measures should be taken to achieve these targets. However, the current industrial waste (IW) statistics have limitations in setting these targets because the final disposal rate and recycling rate are calculated as the ratio of the recycling facility input to the IW generation. In this study, the material flow from the collection stage to the final disposal of industrial waste was analyzed based on the generation of 2016, and the actual recycling amount, actual incineration amount, final disposal amount and their rates were calculated. The effect on the recycling, incineration and final disposal rates was examined by changing the treatment method of nonhazardous wastes from the factory and construction and demolition wastes, which were put in landfills in 2016. In addition, the variation of the waste treatment charge was investigated according to the change of treatment methods. The results of this study are expected to be effectively used to establish the National Resource Circulation Master Plan and industrial waste management policy in the future in South Korea.