• Title/Summary/Keyword: METEOSAT

Search Result 6, Processing Time 0.02 seconds

ESTIMATES OF NET AIR-SEA FLUXES FOR THE TROPICAL AND SUBTROPICAL ATLANTIC BASED ON SATELLITE DATA

  • Katsaros, Kristina B.;Pinker, Rachel T.;Bentamy, Abderrahim;Carton, James A.;Drennan, William M.;Mestas-Nunez, Alberto M.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.997-1000
    • /
    • 2006
  • We estimate the net heat flux in the tropical and subtropical Atlantic Ocean using satellite data. These fluxes are related to changes in sea surface temperature (SST). This variable influences atmospheric circulations and is indicative of surface and subsurface oceanic circulations. We employ data from the geostationary METEOSAT-7 and 8 satellites and from the Special Sensor Microwave/Imager (SSM/I) for the shortwave and long-wave radiative fluxes, and for estimates of SST. For turbulent flux calculations, we use the bulk aerodynamic method with satellite estimates for wind speed and atmospheric humidity and temperature.

  • PDF

Regional Scale Satellite Data Sets for Agricultural, Hydrological and Environmental Applications in Zambia

  • Ngoma, Solomon
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2001.06a
    • /
    • pp.43-48
    • /
    • 2001
  • Many applications in the areas of agricultural, hydrological and environmental resource management require data over very large areas and with a high imaging frequency - monitoring crop growth, water stress, seasonal wetland flooding and natural vegetation development. This precludes the use of fine resolution data (Landsat, Spot) on the grounds of cost, accessibility and low imaging frequency. Meteorological satellites have the potential to fill this need, given their very wide spatial coverage, and high repeat imaging. The Remote Sensing Unit (RSU) at the Zambia Meteorological Department routinely receives, processes and archives imagery from both Meteosat and NOAA AVHRR satellites. Here I wish to present some examples of applications of these data sets that arise from the RSU work - relationships between rainfall and vegetation development as assessed by satellite, derived information and seasonal patterns of flooding in the Barotse floodplain and the Kafue flats. I also wish to outline ways in which a more widespread use of this data by the Zambian institutions canbe achieved.

  • PDF

기상청 위성자료의 처리 및 활용

  • Kim, Kum-Lan;Ahn, Myung-Hwan
    • Atmosphere
    • /
    • v.12 no.4
    • /
    • pp.43-55
    • /
    • 2002
  • 기상청의 위성기상업무는 위성자료를 취득하여 위성영상 및 기상분석정보를 생산하고, 예보관을 비롯한 자료 사용자들에게 자료를 신속하게 제공함으로써 체계적인 위성자료 활용서비스를 수행하는 것이다. 최근 외국의 우주개발 동향과 관련하여 활용 가능한 위성자료가 증가함에 따라 위성자료 활용시스템 개선을 추진해 왔으며, 2002년 현재 종래의 GMS, NOAA 이외에 Meteosat-5, FY-2B, FY-1C, Terra, QuickScat, DMSP, TRMM, SeaWiFS 등의 다양한 위성자료를 활용하고 있다. 예보현업에 대한 원격탐사자료 지원업무는 24시간 근무체계로 위성수신분석장비를 안정적으로 운영하면서 각종 위성정보를 종합적으로 활용하여 기상실황의 변화를 감시하고, 특히 전선, 저기압, 태풍에 동반된 구름의 변화상황, 황사의 발생 및 이동 등에 대한 상황을 파악하고 있다. 또한 위성자료의 보존관리 및 외부기관으로부터의 위성자료 요청에 대한 지원업무도 중요한 업무의 하나로 수행하고 있다. 위성정보 활용체계를 강화하기 위해, GMS-5호 위성의 관측임무를 대체하게 될 GOES-9, MTSAT-1R 위성의 자료수신 및 활용체계 구축을 준비하고 있으며, Terra, Aqua와 같은 첨단 지구관측위성자료를 이용한 기상정보 산출기술의 개발을 단계적으로 추진할 것이다.

Application of real-time satellite based DCS (Data Collection System) in the ocean and fisheries (해양 ${\cdot}$ 수산에 대한 DCS기반 실시간 위성중계수집 시스템의 활용)

  • Yoon, Hong-Joo;Suh, Young-Sang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.344-351
    • /
    • 2005
  • It was discussed to satellite based DCS (NOAA, Orbcomm, ADEOS-II, CBERS in polar satellite and GMS, GOES, METEOSAT, INSAT, FY-2 in geostationary satellite) with PTT (Platform Transmitter Terminal) and DCP (Data collection Platform) in order to application of real-time DCS (Data Collection System) in the ocean and fisheries. For covering ocean data link area in the eastern hemisphere, it was proposed to take DCS on the Korean geostationary satellite in the marine environments.

  • PDF

Characterization of Convective Weather Systems in the Middle Himalaya during 1999 and 2000 Summer Monsoons (1999년과 2000년 여름몬순기간 동안 히말라야 지역에 발생한 대류계의 특성에 관한 연구)

  • Kim, Gwang-Seob;Noh, Joon-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.495-505
    • /
    • 2003
  • Convective weather systems such as organized mesoscale convective systems (Mesoscale Convective Complex, MCC and Convective Cloud Clusters, CCC) and much weaker Disorganized Short-lived Convection (DSC) in the region of India and Nepal were analyzed using the Meteosat-5 IR imagery. The diurnal march and propagation of patterns of convective activity in the Himalayas and Northern Indian subcontinent were examined. Results indicate that infrared satellite images of Northern India and along the southern flank of the Himalayas reveal a strong presence of convective weather systems during the 1999 and 2000 monsoons, especially in the afternoon and during the night. The typical MCCs have life-times of about 11 hours, and areal extent about $300,000km^2$. Although the core of MCC activity remains generally away from the Middle Himalayan range, the occurrence of heavy precipitation events in this region can be directly linked to MCCs that venture into the Lesser Himalayan region and remain within the region bounded by $25^{\circ}-30^{\circ}N$. One principal feature in the spatial organization of convection is the dichotomy between the Tibetan Plateau and the Northern Indian Plains: CCCs and DSCs begin in the Tibetan Plateau in the mid-afternoon into the evening; while they are most active in the mid-night and early morning in the Gangetic Plains and along the southern facing flanks of the Himalayas. Furthermore, these data are consistent with the daily cycle of rainfall documented for a network of 20 hydrometeorological stations in Central Nepal, which show strong nocturnal peaks of intense rainfall consistent with the close presence of Convective Weather Systems (CWSs) in the Gangetic Plains (Barros et al. 2000).