• Title/Summary/Keyword: MEP design

Search Result 44, Processing Time 0.017 seconds

Design to Integrated Display and Caution Function for KHP (기동헬기 통합시현 및 경고 기능 설계)

  • Kim, Sung-Woo;Go, Eun-Kyoung;Lee, Byoung-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.481-489
    • /
    • 2017
  • Situation awareness means recognizing everything necessary to understand progress in a flight or aircraft maintenance work. Situation awareness is based on more than simply recognizing important about the environment, and it is important to provide the meaning of information in an integrated form. The KHP provides the pilot with integrated situation display for an integrated form of situation awareness and warning that synchronizes the priority based audible signal with the visual signal. Provide integrated display and warning to reduce operator error and enable operators to focus on mission critical tasks and events. This paper introduces the integrated situation display and warning design implemented in the KHP.

Implementation and Verification of Lateral Navigation Algorithm for Korean Utility Helicopter (기동헬기 측면항법 알고리즘 구현 및 검증)

  • Kim, Sung-woo;Go, Eun-kyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.354-361
    • /
    • 2018
  • This paper describe the Lateral Navigation algorithm design and verification that implementation on Mission Computer's OFP for Korean Utility Helicopter(KUH) instead of Auto Flight Control System(AFCS) Vehicle Management System. The LNAV function transmits Roll command into the AFCS System. The Roll command value will be calculated by control algorithms in MC. The Operational Flight Program(OFP) shall use for its calculations different measurements of the aircraft's attitude and place. Using these inputs, the OFP will translate a navigational demand(for example-to perform the selected flight plan) into Roll commands to the autopilot. By conducting integration test using SIL and ground test, flight test, it is confirmed that the introduced algorithm meets the requirements of the Mission Equipment Package(MEP) system. LNAV function is verified through the System Integration Laboratory(SIL) test, ground and flight test.

The Effects of Respiratory Muscle Training on Respiratory Function, Respiratory Muscle Strength, and Cough Capacity in Stroke Patients (호흡근 강화 훈련이 뇌졸중 환자의 호흡기능, 호흡근력과 기침능력에 미치는 영향)

  • Jo, Myeong-Rae;Kim, Nan-Soo;Jung, Ju-Hyeon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.4
    • /
    • pp.399-406
    • /
    • 2014
  • PURPOSE: The purpose of this study was to examine the effects of respiratory muscle training on respiratory function, respiratory muscle strength, and cough capacity in stroke patients. METHODS: This study used a nonequivalent control group pre-post test design. We recruited thirty-four stroke patients(16male, 18female), who were assigned to intervention (n=17), or control (n=17) groups. Both groups participated in a conventional stroke rehabilitation program, with the intervention groups also receiving respiratory muscle training 20 minutes a day, three times a week, for 4 weeks. Respiratory function (forced vital capacity) and respiratory muscle strength (maximal inspiratory pressure, maximal expiratory pressure) were assessed by spirometry. Cough capacity (peak expiratory flow) was assessed using a peak flow meter. The collected data were analyzed by independent and paired t-tests. RESULTS: The intervention group showed a significant increase in the forced vital capacity (FVC), maximal inspiratory pressure (MIP), maximal expiratory pressure (MEP) and peak expiratory flow (PEF) at the end of the program, while the control group showed no significant changes. CONCLUSION: This study showed that respiratory muscle training increased respiratory function, respiratory muscle strength, and cough capacity in stroke patients and prevented a decrease in cough capacity. These findings suggest that respiratory muscle training effect on respiratory function, respiratory muscle strength and cough capacity for rehabilitation in patients with stroke.

The Present Status and Vision of Virtual Construction System Development (가상 건설 시스템 개발 현황과 비전)

  • Kim, Jae-Jun;Choi, Cul-Ho;Shin, Hyun-Mok;Jin, Sang-Yoon;Lee, Kwang-Myung
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.170-175
    • /
    • 2008
  • The research team for the virtual construction development was established with the support of Korea Ministry of Construction and Transportation, and KICTEP (Korea Institute of Construction and Transportation Technology Evaluation and Planning). Its aims are to develop system that is to improve productivity & quality, to create a higher value-added business, and to cultivate international competitiveness in the construction industry. The virtual construction system is a design, engineering, and construction management information system that allows the project participants to effectively share the information throughout the construction life cycle with the support of 3D and design information. To achieve this, the research team focuses on developing several systems. First, the team focuses on developing for the pre-planning, the structural engineering, MEP, and the 3D based estimation system. Second, they focus on developing a simulation system for the construction process planning and feasibility study with help of the virtual reality technologies. Third, they focus on developing the CPLM (Construction Project Life-cycle Management) system for managing construction project data, and the decision support system that makes the collaboration among the project participants based on 3D technologies and information. We also focus on developing the SDAI (Standard Data Access Interface), the localized guideline for 3D design, and a training program. In addition, we focus on developing the undeveloped area of the commercial system and building an environment that can support the communication and collaboration in the construction life-cycle rather than developing the existing and commercialized system.

  • PDF