• 제목/요약/키워드: MEMS-based chip

검색결과 31건 처리시간 0.02초

미소유체 칩 상에서 Quantum Dot 및 마이크로 비드를 이용한 생체물질 분석 (Microbead-based bio-assay using quantum dot fluorescence in a microfluidic chip)

  • 윤광석;이도훈;김학성;윤의식
    • 센서학회지
    • /
    • 제14권5호
    • /
    • pp.308-312
    • /
    • 2005
  • We present a microfluidic chip designed for the detection of antibody by using quantum dots fluorescence and a microbead-based assay. A custom designed PDMS microfluidic chip with multi-layer channel is utilized for capturing microbeads; antibody injection into each micro-well; QD injection; and fluorescence detection. The experiment using the fabricated microfluidic chip has been performed on solutions with various concentrations of antibody and has shown correlated fluorescent intensities.

TEM sample preparation using micro-manipulator for in-situ MEMS experiment

  • Hyunjong Lee;Odongo Francis Ngome Okello;Gi-Yeop Kim;Kyung Song;Si-Young Choi
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.8.1-8.7
    • /
    • 2021
  • Growing demands for comprehending complicated nano-scale phenomena in atomic resolution has attracted in-situ transmission electron microscopy (TEM) techniques for understanding their dynamics. However, simple to safe TEM sample preparation for in-situ observation has been limited. Here, we suggested the optical microscopy based micro-manipulating system for transferring TEM samples. By adopting our manipulator system, several types of samples from nano-wires to plate-like thin samples were transferred on micro-electro mechanical systems (MEMS) chip in a single step. Furthermore, the control of electrostatic force between the sample and the probe tip is found to be a key role in transferring process.

MEMS Application of Quenching Effect to a Novel Micro Solid Rocket

  • Ebisuzaki, Hideyo;Nagayama, Kunihito;Ikuta, Tatsuya;Takahashi, Koji
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.601-604
    • /
    • 2004
  • Precise position and attitude control of pico-satellite requires huge number of impulses of the order of 10$^{-6}$ Ns. MEMS solid rocket array is a promising propulsion system but the higher degree of miniaturization causes unreliable operation mainly due to quenching. In order to breakthrough this situation, a novel design of solid micro-rocket is proposed, which generates tiny impulses repetitively from a single rocket not from array. This unique micro-rocket is based on the utilization of quenching, which causes propellant reaction to sustain only in a small area. A test chip of a micro solid propellant tank and micro heater array is fabricated and ignition test is conducted. Obtained results show the feasibility of this concept and future direction of this quenching-based propulsion is discussed.

  • PDF

RF MEMS 소자 실장을 위한 LTCC 및 금/주석 공융 접합 기술 기반의 실장 방법 (LTCC-based Packaging Method using Au/Sn Eutectic Bonding for RF MEMS Applications)

  • 방용승;김종만;김용성;김정무;권기환;문창렬;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.30-32
    • /
    • 2005
  • This paper reports on an LTCC-based packaging method using Au/Sn eutectic bonding process for RF MEMS applications. The proposed packaging structure was realized by a micromachining technology. An LTCC substrate consists of metal filled vertical via feedthroughs for electrical interconnection and Au/Sn sealing rim for eutectic bonding. The LTCC capping substrate and the glass bottom substrate were aligned and bonded together by a flip-chip bonding technology. From now on, shear strength and He leak rate will be measured then the fabricated package will be compared with the LTCC package using BCB adhesive bonding method which has been researched in our previous work.

  • PDF

BioMEMS 기반의 조기 질병 진단 기술에 관한 연구 (BioMEMS-EARLY DISEASE DETECTION)

  • 카나카싱;김경천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2781-2784
    • /
    • 2007
  • Early detection of a disease is important to tackle treatment issues in a better manner. Several diagnostic techniques are in use, these days; for such purpose and tremendous research is going on to develop newer and newer methods. However, more work is required to be done to develop cheap and reliable early detection techniques. Micro-fluidic chips are also playing key role to deliver new devices for better health care. The present study focuses on a review of recent developments in the interrogation of different techniques and present state-of-the-art of microfluidic sensor for better, quick, easy, rapid, early, inexpensive and portable POCT (Point of Care testing device) device for a particular study, in this case, bone disease called osteoporosis. Some simulations of the microchip are also made to enable feasibility of the development of a blood-chip-based system. The proposed device will assist in early detection of diseases in an effective and successful manner.

  • PDF

실차 적용을 통한 각속도센서 특성 연구 (A Study on Characteristics of Angular Rate Sensor using Real Vehicle)

  • 김병우
    • 전기학회논문지
    • /
    • 제56권7호
    • /
    • pp.1218-1223
    • /
    • 2007
  • A surface micro machined angular rate sensor utilizing a vibrating MEMS structure on a silicon has been developed. These tuning fork angular rate sensors are extremely rugged, inherently balanced, and easy to fabricate. The device is fabricated using a temperature compensation method based on automatic gain control technique. A linearity of approximately 0.6%, limited by the on-chip electronics has been obtained with this new sensor. Tests of the sensor demonstrate that its performance is equivalent to that required for implementation of a yaw control system. Vehicle handling and safety are substantially improved using the sensor to implement yaw control.

UV 임프린팅 공정을 이용한 금속막 필터제작 (Fabrication of Metallic Nano-filter Using UV-Imprinting Process)

  • 노철용;이남석;임지석;김석민;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.237-240
    • /
    • 2005
  • The demand of micro electrical mechanical system (MEMS) bio/chemical sensor is rapidly increasing. To prevent the contamination of sensing area, a filtration system is required in on-chip total analyzing MEMS bio/chemical sensor. A nano-filter was mainly applied in some application detecting submicron feature size bio/chemical products such as bacteria, fungi and so on. We suggested a simple nano-filter fabrication process based on replication process. The mother pattern was fabricated by holographic lithography and reactive ion etching process, and the replication process was carried out using polymer mold and UV-imprinting process. Finally the nano-filter is obtained after removing the replicated part of metal deposited replica. In this study, as a practical example of the suggested process, a nano-dot array was replicated to fabricate nano-filter fur bacteria sensor application.

  • PDF

실리콘 웨이퍼 상에 제작된 미소 유로에서의 유동특성 (Flow Characteristics in a Microchannel Fabricated on a Silicon Wafer)

  • 김형우;원찬식;정시영;허남건
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1844-1852
    • /
    • 2001
  • Recent developments in microfluidic devices based on microelectromechanical systems (MEMS) technique find many practical applications, which include electronic chip cooling devices, power MEMS devices, micro sensors, and bio-medical devices among others. For the design of such micro devices, flows characteristics inside a microchannel have to be clarified which exhibit somewhat different characteristics compared to conventional flows in a macrochannel. In the present study microchannels of various hydraulic diameters are fabricated on a silicon wafer to study the pressure drop characteristics. The effect of abrupt contraction and expansion is also studied. It is found from the results that the friction factor in a straight microchannel is about 15% higher than that in a conventional macrochannel, and the loss coefficients in abrupt expansion and contraction are about 10% higher than that obtained through conventional flow analysis.

AlN Based RF MEMS Tunable Capacitor with Air-Suspended Electrode with Two Stages

  • Cheon, Seong J.;Jang, Woo J.;Park, Hyeon S.;Yoon, Min K.;Park, Jae Y.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권1호
    • /
    • pp.15-21
    • /
    • 2013
  • In this paper, a MEMS tunable capacitor was successfully designed and fabricated using an aluminum nitride film and a gold suspended membrane with two air gap structure for commercial RF applications. Unlike conventional two-parallel-plate tunable capacitors, the proposed tunable capacitor consists of one air suspended top electrode and two fixed bottom electrodes. One fixed and the top movable electrodes form a variable capacitor, while the other one provides necessary electrostatic actuation. The fabricated tunable capacitor exhibited a capacitance tuning range of 375% at 2 GHz, exceeding the theoretical limit of conventional two-parallel-plate tunable capacitors. In case of the contact state, the maximal quality factor was approximately 25 at 1.5 GHz. The developed fabrication process is also compatible with the existing standard IC (integrated circuit) technology, which makes it suitable for on chip intelligent transceivers and radios.

슈퍼 칩 구현을 위한 헤테로집적화 기술 (Ultimate Heterogeneous Integration Technology for Super-Chip)

  • 이강욱
    • 마이크로전자및패키징학회지
    • /
    • 제17권4호
    • /
    • pp.1-9
    • /
    • 2010
  • 삼차원 집적화기술의 현황과 과제 및 향후에 요구되어질 새로운 삼차원 집적화기술의 필요성에 대해 논의를 하였다. Super-chip 기술이라 불리우는 자기조직화 웨이퍼집적화 기술 및 삼차원 헤테로집적화 기술에 대해 소개를 하였다. 액체의 표면장력을 이용하여지지 기반위에 다수의 KGD를 일괄 실장하는 새로운 집적화 기술을 적용하여, KGD만으로 구성된 자기조직화 웨이퍼를 다층으로 적층함으로써 크기가 다른 칩들을 적층하는 것에 성공을 하였다. 또한 삼차원 헤테로집적화 기술을 이용하여 CMOS LSI, MEMS 센서들의 전기소자들과 PD, VC-SEL등의 광학소자 및 micro-fluidic 등의 이종소자들을 삼차원으로 집적하여 시스템화하는데 성공하였다. 이러한 기술은 향후 TSV의 실용화 및 궁극의 3-D IC인 super-chip을 구현하는데 필요한 핵심기술이다.