• 제목/요약/키워드: MEMS switch

검색결과 88건 처리시간 0.029초

금/주석 공융점 접합과 유리 기판의 건식 식각을 이용한 고주파 MEMS 스위치의 기판 단위 실장 (Wafer-Level Package of RF MEMS Switch using Au/Sn Eutectic Bonding and Glass Dry Etch)

  • 강성찬;장연수;김현철;전국진
    • 센서학회지
    • /
    • 제20권1호
    • /
    • pp.58-63
    • /
    • 2011
  • A low loss radio frequency(RF) micro electro mechanical systems(MEMS) switch driven by a low actuation voltage was designed for the development of a new RF MEMS switch. The RF MEMS switch should be encapsulated. The glass cap and fabricated RF MEMS switch were assembled by the Au/Sn eutectic bonding principle for wafer-level packaging. The through-vias on the glass substrate was made by the glass dry etching and Au electroplating process. The packaged RF MEMS switch had an actuation voltage of 12.5 V, an insertion loss below 0.25 dB, a return loss above 16.6 dB, and an isolation value above 41.4 dB at 6 GHz.

See-saw Type RF MEMS Switch with Narrow Gap Vertical Comb

  • Kang, Sung-Chan;Moon, Sung-Soo;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제7권3호
    • /
    • pp.177-182
    • /
    • 2007
  • This paper presents the see-saw type RF MEMS switch based on a single crystalline silicon structure with narrow gap vertical comb. Low actuation voltage and high isolation are key features to be solved in electrostatic RF MEMS switch design. Since these parameters in conventional parallel plate RF MEMS switch designs are in trade-off relationship, both requirements cannot be met simultaneously. In the vertical comb design, however, the actuation voltage is independent of the vertical separation distance between the contact electrodes. Therefore, the large separation gap between contact electrodes is implemented to achieve high isolation. We have designed and fabricated RF MEMS switch which has 46dB isolation at 5GHz, 0.9dB insertion loss at 5GHz and 40V actuation voltage.

추진기관 점화안전장치에 적용 가능한 MEMS 관성 스위치 연구 (Studies on MEMS Inertial Switch Applicable to the Ignition SAU(Safe-Arm-Unit) of Propulsion System)

  • 장승교;정형균
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.126-129
    • /
    • 2010
  • 추진기관용 점화안전장치인 SAU에 적용 가능한 MEMS 관성 스위치를 고안하였다. 본 MEMS 관성 스위치는 일반적인 기계요소 설계 방식을 따라 설계하였으나 일반적인 MEMS 가속계와 다르게 목넘김 관성 스위칭 방식을 채택하여 일정 가속도 이상에서만 스위칭이 일어난다. 제작된 시료에 대한 검사 결과와 설계 데이터를 비교해 본 결과 관성 스위치의 구성 요소인 판 스프링 및 연성 힌지의 비선형요소에 의한 영향으로 인하여 설계된 스위칭 가속도 값과 근사한 차이가 유발됨을 확인하였다.

  • PDF

수평 구동형 MEMS 관성 스위치 설계 및 성능해석 (Design and Performance Analysis of Lateral Type MEMS Inertial Switch)

  • 김학성;장승교
    • 한국항공우주학회지
    • /
    • 제48권7호
    • /
    • pp.523-528
    • /
    • 2020
  • 스프링-메스 시스템의 원리를 이용하여 수평 구동형 MEMS 관성 스위치를 설계하였다. 본 MEMS 스위치는 외부에서 발생하는 가속도를 감지하여 점화안전장치를 장전시키는 역할을 한다. 성능 모델링을 통하여 다양한 가속도 조건에서의 구동 양상을 분석하였다. 시뮬레이션 결과 가속도의 기울기가 10g/msec 이하인 경우에 MEMS 스위치는 10g에서 잘 작동하는 것으로 나타났다. 반면에, 설계 변수들의 공차를 10%로 고려한 시뮬레이션 결과 스프링 폭과 길이에 의해 임계 동작 가속도가 규격(10±2g)을 벗어났다. 제작 공정상 10% 이하의 공차 관리가 어려운 스프링 폭을 두 배로 늘렸을 때 규격을 만족하는 것을 확인하고 설계보완을 제안하였다.

Applications of MEMS-MOSFET Hybrid Switches to Power Management Circuits for Energy Harvesting Systems

  • Song, Sang-Hun;Kang, Sungmuk;Park, Kyungjin;Shin, Seunghwan;Kim, Hoseong
    • Journal of Power Electronics
    • /
    • 제12권6호
    • /
    • pp.954-959
    • /
    • 2012
  • A hybrid switch that uses a microelectromechanical system (MEMS) switch as a gate driver of a MOSFET is applied to an energy harvesting system. The power management circuit adopting the hybrid switch provides ultralow leakage, self-referencing, and high current handling capability. Measurements show that solar energy harvester circuit utilizing the MEMS-MOSFET hybrid switch accumulates energy and charges a battery or drive a resistive load without any constant power supply and reference voltage. The leakage current during energy accumulation is less than 10 pA. The power management circuit adopting the proposed hybrid switch is believed to be an ideal solution to self-powered wireless sensor nodes in smart grid systems.

Package-Platformed Linear/Circular Polarization Reconfigurable Antenna Using an Integrated Silicon RF MEMS Switch

  • Hyeon, Ik-Jae;Jung, Tony J.;Lim, Sung-Joon;Baek, Chang-Wook
    • ETRI Journal
    • /
    • 제33권5호
    • /
    • pp.802-805
    • /
    • 2011
  • This letter presents a K-band polarization reconfigurable antenna integrated with a silicon radio frequency MEMS switch into the form of a compact package. The proposed antenna can change its state from linear polarization (LP) to circular polarization (CP) by actuating the MEMS switch, which controls the configuration of the coupling ring slot. Low-loss quartz is used for a radiating patch substrate and at the same time for a packaging lid by stacking it onto the MEMS substrate, which can increase the system integrity. The fabricated antenna shows broadband impedance matching and exhibits high axial ratios better than 15 dB in the LP and small axial ratios in the CP, with a minimum value of 0.002 dB at 20.8 GHz in the K-band.

표면미세가공시 발생하는 MEMS 구조물의 변형 억제 (Alleviating Deformation of MEMS Structure in Surface Micromachining)

  • 홍석관;권순철;전병희;신형재
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.163-170
    • /
    • 2006
  • By removing sacrificial layer through ashing process, movable MEMS structure on substrate can be fabricated in surface micromachining. However, MEMS structure includes, during the ashing process, the warping or buckling effects due to stress gradient along the vertical direction of thin film. In this study, we presented method for counteracting the unwanted deflection of MEMS structure and designed using character of deposit process to overcome limited design conditions. Unit cell patterns were designed with character of deposit shape, and their final shapes were adopted using Finite Element Method. Finally, RF MEMS switch was fabricated by surface micro machining as test vehicles. We checked out that alleviation effect for deformation of switch improved by 35%.

Low Actuation Voltage Capacitive Shunt RF-MEMS Switch Using a Corrugated Bridge with HRS MEMS Package

  • Song Yo-Tak;Lee Hai-Young;Esashi Masayoshi
    • Journal of electromagnetic engineering and science
    • /
    • 제6권2호
    • /
    • pp.135-145
    • /
    • 2006
  • This paper presents the theory, design, fabrication and characterization of the novel low actuation voltage capacitive shunt RF-MEMS switch using a corrugated membrane with HRS MEMS packaging. Analytical analyses and experimental results have been carried out to derive algebraic expressions for the mechanical actuation mechanics of corrugated membrane for a low residual stress. It is shown that the residual stress of both types of corrugated and flat membranes can be modeled with the help of a mechanics theory. The residual stress in corrugated membranes is calculated using a geometrical model and is confirmed by finite element method(FEM) analysis and experimental results. The corrugated electrostatic actuated bridge is suspended over a concave structure of CPW, with sputtered nickel(Ni) as the structural material for the bridge and gold for CPW line, fabricated on high-resistivity silicon(HRS) substrate. The corrugated switch on concave structure requires lower actuation voltage than the flat switch on planar structure in various thickness bridges. The residual stress is very low by corrugating both ends of the bridge on concave structure. The residual stress of the bridge material and structure is critical to lower the actuation voltage. The Self-alignment HRS MEMS package of the RF-MEMS switch with a $15{\Omega}{\cdot}cm$ lightly-doped Si chip carrier also shows no parasitic leakage resonances and is verified as an effective packaging solution for the low cost and high performance coplanar MMICs.