• 제목/요약/키워드: MEMS Fabrication Influence

검색결과 2건 처리시간 0.015초

공정영향을 고려한 비연성 진동형 마이크로 자이로스코프의 강건 최적 설계 (Robust Optimal Design of a Decoupled Vibratory Microgyroscope Considering Fabrication Influence)

  • 정희문;하성규
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1065-1074
    • /
    • 2004
  • A robust optimal design considering fabrication influence has been performed for the decoupled vibratory microgyroscope fabricated by the bulk micromachining. For the analysis of the gyroscope, a design tool has been developed, by which user can perform the system level design considering electric signal process and the fabrication influence as well as mechanical characteristics. An initial design of the gyroscope is performed satisfying the performances of scale factor (or sensitivity) and phase delay, which depend on the frequency difference between driving and sensing resonant frequencies. The objective functions are formulated in order to reduce the variances of the frequency difference and the frequency in itself by fabrication error. To certify the results, the standard deviations are calculated through the Monte Caries Simulation (MCS) and compared initial deviation that is measured fabricated gyroscope chip.

Microelectromechnical system 소자 제작을 위한 유기금속분해법에 의한 압전성 PZT(53/47)박막의 증착 (Deposition of Piezoelectric PZT(53/47) Film by Metalorganic Decomposition for Micro electro mechanical Device)

  • 윤영수;정형진;신영화
    • 한국전기전자재료학회논문지
    • /
    • 제11권6호
    • /
    • pp.458-464
    • /
    • 1998
  • This paper gives characterization of substrate and PZT(53/47) thin film deposited by metalorganic decomposition, which is concerned in deposition process and device fabrication process, to fabricate micro electro mechanical system (MEMS) device with piezoelectric material. The PZT thin films deposited by MOD at 700^{\circ}C$ for 30 minutes had a polycrystallinity, that is, no substrate dependence, while different interface were developed depending on the bottom electrodes. Such a structural variation could influence on not only the properties of the PZT film but also etching process for fabricating MEMS devices. Therefore the electrode structure is a very important factor in the deposition of the PZT film during etching process by HF acid for MEMS device with piezoelectric material. Piezoelectric coefficients of the PZT films on the different substrates were 40 and 80 pm/V at an applied voltage of 4V. Based in these results, it was possible for deposition of the PZT film by MOD to apply MEMS device fabrication process based on piezoelectricity after selection of proper bottom electrode.

  • PDF