• Title/Summary/Keyword: MEMS 관성 센서

Search Result 36, Processing Time 0.054 seconds

A Study on Implementation of Automatic Evaluation System for Static Performance of 6 DOF MEMS Inertial Sensor (6자유도 MEMS 관성센서 정적성능 자동 평가 시스템 구현에 관한 연구)

  • Ji Won Park;Hussamud Din;Byeung Leul Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.62-66
    • /
    • 2023
  • With the advancement in technology and rapid increase in the demand for microelectromechanical systems (MEMS) based inertial measurement units (IMUs), high-volume production and test system remain a major challenge for the MEMS industry. To compete with the challenging market of Industry 4.0, here we developed an automatic test system to evaluate the performance of the ovenized IMU sensors as well as analyze the data. The automatic test system was developed by interfacing a commercial MEMS IMU (BMI 088) using LabVIEW. The BMI 088 was tested experimentally for long-term bias stability, ON/OFF bias repeatability, and root mean square (rms) noise. Furthermore, the data was analyzed through the developed test system. The results show that the automatic test system has improved the test time and reduced human effort. The developed automatic test system is a significant approach to MEMS research and development (R&D) to increase and improve the mass production of IMUs.

  • PDF

Vehicle localization in GPS signal unavailability area using weakly coupled IMU and GPS (관성 센서와 GPS 약결합을 통한 GPS 음영지역에서 차량 위치 추정)

  • Kim, Do-Yoon;Park, Hyun-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1942-1943
    • /
    • 2011
  • 차량의 무인화에 대한 관심이 증대하면서 자율 주행 문제의 중요성이 부각되고 있다. 현재 전역적인 차량 위치는 GPS에 도움을 받고 있지만 도심 고층 빌딩 밀집 지역에서 GPS 신호가 불안해지는 멀티 패스 페이딩 현상에 대한 대안 및 터널을 통과할 때 GPS 신호가 단절되는 구간에 대한 대안이 필요하다. 본 연구에서는 MEMS 기반의 관성 센서를 제작하고 이를 이용하여 차량의 주행 모드를 자동으로 판별한 뒤 각 상황에 알맞은 칼만 필터를 설계하여 차량 위치를 파악하는 알고리즘을 제안한다. 제안한 알고리즘은 실제 임베디드 시스템에 이식되어 10Hz로 동작함을 확인하였고 GPS 음영 지역에서 3분 이내에는 GPS 오차 범위 내에서 차량 위치를 파악할 수 있음을 실험을 통해 확인하였다.

  • PDF

Design of a 6-Axis Inertial Sensor IC for Accurate Location and Position Recognition of M2M/IoT Devices (M2M / IoT 디바이스의 정밀 위치와 자세 인식을 위한 6축 관성 센서 IC 설계)

  • Kim, Chang Hyun;Chung, Jong-Moon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.82-89
    • /
    • 2014
  • Recently, inertial sensors are popularly used for the location and position recognition of small devices for M2M/IoT. In this paper, we designed low power, low noise, small sized 6-axis inertial sensor IC for mobile applications, which uses a 3-axis piezo-electric gyroscope sensor and a 3-axis piezo-resistive accelerometer sensor. Proposed IC is composed of 3-axis gyroscope readout circuit, two gyroscope sensor driving circuits, 3-axis accelerometer readout circuit, 16bit sigma-delta ADC, digital filter and control circuit and memory. TSMC $0.18{\mu}m$ mixed signal CMOS process was used. Proposed IC reduces 27% of the current consumption of LSM330.

A Study on the Wireless Ship Motion Measurement System Using AHRS (AHRS를 이용한 무선 선체 운동 측정 시스템에 관한 연구)

  • Kim, Dae-Hae;Lee, Sang-Min;Kong, Gil-Young
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.575-580
    • /
    • 2013
  • The IMU(Inertial Measurement Unit) which is the expensive equipment has been used as a special limited area, usually in measurement of posture of applying to the areas of ship, submarine, aircraft and military equipment application. However, in the current situation, MEMS AHRS technology can replace the high-priced IMU in MEMS AHRS selected application field. In this paper, wireless hull motion measurement system was suggested for measuring key elements of ship's movement such as rolling, pitching and yawing using gyro, acceleration and magnetic sensors of AHRS. In order to reduce the error such as instantaneous acceleration, effects and vibration of geomagnetic, we have adopted the sensors equipped with Kalman filtering. The Wireless hull motion measurement system using AHRS sensors was tested in actual ship and it could easily be applied in limited installation circumstances of the ship. In the future, this system can be useful in the navigation safety and marine accident analysis by using with ship equipment such as INS or VDR in the maritime.

PC Input Device Using Inertial Sensor (관성센서를 이용한 PC 입력장치 개발)

  • Jin, Yong;Lee, Jun-Ho;Park, Chan-Guk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.79-79
    • /
    • 2000
  • In this Paper, the PC input device using MEMS gyros and accelerometer is newly developed, so that it can measure rotation rate and linear acceleration of the human body in space. In General, the human motion has 6 degree of freedom but 2 degree of freedom is enough PC monitor with 2D display. Therefore the simple method is proposed to achieve minimum degree of freedom. It is also applied to the PC mouse. This method can be expanded to the input device for internet set-top box or internet TV.

  • PDF

Golf Swing Diagnosis Equipment based on MEMS Inertial Sensors (초소형 관성센서를 이용한 골프스윙진단장치)

  • Song, Ci-Moo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1761-1766
    • /
    • 2008
  • This paper deals with a novel autocalibration method of three-axis micromachined accelerometers applied to a new golf swing diagnosis equipment for golfers. This diagnosis equipment can help golfers monitor and anlalyze their swing posture and therefore modify their swing action to get better score and enjoy their lives through golf. The micromachined accelerometers to get information of the motion are the essential part of the putting club to measure the three-axis acceleration as accurately as possible. This paper presents an efficient autocalibration algorithm to find the offset and sensitivity of accelerometers by only using the static measurement data at six different positions. The experimetnal results on the developed putters show the validity of the proposed algorithm for the new smart putter.

  • PDF

Development of Attitude Heading Reference System based on MEMS for High Speed Autonomous Underwater Vehicle (고속 자율 무인잠수정 적용을 위한 MEMS 기술기반 자세 측정 장치 개발)

  • Hwang, A-Rom;Ahn, Nam-Hyun;Yoon, Seon-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.666-673
    • /
    • 2013
  • This paper proposes the performance evaluation test of attitude heading reference system (AHRS) suitable for small high speed autonomous underwater vehicle(AUV). Although IMU can provides the detail attitude information, it is sometime not suitable for small AUV with short operation time in view of price and the electrical power consumption. One of alternative for tactical grade IMU is the AHRS based micro-machined electro mechanical system(MEMS) which can overcome many problems that have inhibited the adoption of inertial system for small AUV such as cost and power consumption. A cost effective and small size AHRS which incorporates measurements from 3-axis MEMS gyroscopes, accelerometers, and 3-axis magnetometers has been developed to provide a complete attitude solution for AUV and the attitude calculation algorithm is derived based the coordinate transform equation and Kalman filter. The developed AHRS was validated through various performance tests as like the magnetometer calibration, operating experiments using land mobile vehicle and flight motion simulator (FMS). The test of magnetometer calibration shows the developed MEMS AHRS is robust to the external magent field change and the test with land vehicle proves the leveling error of developed MEMS AHRS is below $0.5^{\circ}/hr$. The results of FMS test shows the fact that AHRS provides the measurement with $0.5^{\circ}/hr$ error during 5 minutes operation time. These results of performance evaluation tests showed that the developed AHRS provides attitude information which error of roll and pitch are below $1^{\circ}$ and the error of yaw is below $5^{\circ}$ and satisfies the required specification. It is expected that developed AHRS can provide the precise attitude measurement under sea trial with real AUV.

GPS/INS Integration and Preliminary Test of GPS/MEMS IMU for Real-time Aerial Monitoring System (실시간 공중 자료획득 시스템을 위한 GPS/MEMS IMU 센서 검증 및 GPS/INS 통합 알고리즘)

  • Lee, Won-Jin;Kwon, Jay-Hyoun;Lee, Jong-Ki;Han, Joong-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.225-234
    • /
    • 2009
  • Real-time Aerial Monitoring System (RAMS) is to perform the rapid mapping in an emergency situation so that the geoinformation such as orthophoto and/or Digital Elevation Model is constructed in near real time. In this system, the GPS/INS plays an very important role in providing the position as well as the attitude information. Therefore, in this study, the performance of an IMU sensor which is supposed to be installed on board the RAMS is evaluated. And the integration algorithm of GPS/INS are tested with simulated dataset to find out which is more appropriate in real time mapping. According to the static and kinematic results, the sensor shows the position error of 3$\sim$4m and 2$\sim$3m, respectively. Also, it was verified that the sensor performs better on the attitude when the magnetic field sensor are used in the Aerospace mode. In the comparison of EKF and UKF, the overall performances shows not much differences in straight as well as in curved trajectory. However, the calculation time in EKF was appeared about 25 times faster than that of UKF, thus EKF seems to be the better selection in RAMS.

Extended Kalman Filtering for I.M.U. using MEMs Sensors (반도체 센서의 확장칼만필터를 이용한 자세추정)

  • Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.4
    • /
    • pp.469-475
    • /
    • 2015
  • This paper describes about the method for designing an extended Kalman filter to accurately measure the position of the spatial-phase system using a semiconductor sensor. Spatial position is expressed by the correlation of the rotated coordinate system attached to the body from the inertia coordinate system (a fixed coordinate system). To express the attitude, quaternion was adapted as a state variable, Then, the state changes were estimated from the input value which was measured in the gyro sensor. The observed data is the value obtained from the acceleration sensor. By matching between the measured value in the acceleration sensor and the predicted calculation value, the best variable was obtained. To increase the accuracy of estimation, designation of the extended Kalman filter was performed, which showed excellent ability to adjust the estimation period relative to the sensor property. As a result, when a three-axis gyro sensor and a three-axis acceleration sensor were adapted in the estimator, the RMS(Root Mean Square) estimation error in simulation was retained less than 1.7[$^{\circ}$], and the estimator displayed good property on the prediction of the state in 100 ms measurement period.

요트 계류장의 운동측정 장치 개발과 평가 결과

  • Im, Jeong-Bin;Kim, Dae-Hui;Jo, Su-San;Jo, Yu-Gyeong;Mun, Ji-Ung;Park, Hye-Ri;Lee, Sang-Hun;Gwon, Do-Eon;Park, Eun-Seon;Jo, Ha-Ram
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.10a
    • /
    • pp.148-150
    • /
    • 2012
  • 바람이나 파도에 의해서 요트 계류장과 요트 사이 또는 요트 계류장과 계류장 사이에는 충격이 발생하는데, 이러한 충격으로 인하여 계류장 또는 요트가 파손되거나 전복된다. 특히, 방파제 없이 외해에 설치한 요트 계류장은 이러한 위기에 항상 노출되어 있어 이에 대한 대책이 시급한 실정이다. 논문에서는 요트 계류장의 롤링, 히브, 핏칭 등의 운동을 측정하기 위한 하드웨어의 구축과 평가에 관해서 기술하였다. 하드웨어는 MEMS 기반 자이로와 가속도계 등의 관성 센서를 내장한 반도체 센서 SD746을 이용하여 구축하였고, 구축한 하드웨어를 이용하여 소형 요트 계류장에서 발생할 수 있는 운동을 수작업으로 생성하여 측정 및 평가하였다. 실험결과 x-축, y-축, z-축 등 3축 가속도와 3축 각속도 측정이 가능하여 요트 계류장의 운동 상태 모니터링이 가능함을 알았다. 본 연구는 추후 요트 계류장의 위기상태를 평가하고 통보하기 위한 시스템 구축에 이용할 예정이다.

  • PDF