• Title/Summary/Keyword: MEMS 공정

Search Result 265, Processing Time 0.021 seconds

Manufacture of TSVs (Through-Silicon Vias) based on Single-Walled Nanotubes (SWNTs)/Sn Composite at Low Temperature (저온 공정을 통해 제작이 가능한 Sn/SWNT 혼합 파우더 기반의 TSV구조 개발)

  • Jung, Dong Geon;Jung, Daewoong;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.127-132
    • /
    • 2019
  • In this study, the fabrication of through-silicon vias (TSVs) filled with SWNTs/Sn by utilizing surface/bulk micromachining and MEMS technologies is proposed. Tin (Sn) and single-walled nanotube (SWNT) powders are used as TSV interconnector materials in the development of a novel TSV at low temperature. The measured resistance of a TSV filled with SWNT/Sn powder is considerably reduced by increasing the fraction of Sn and is lower than that of a TSV filled with only Sn. This is because of a decrease in the surface scattering of electrons along with an increase in the grain size of sintered SWNTs/Sn. The proposed method is conducted at low temperatures (< $400^{\circ}C$) due to the low melting temperature of Sn; hence, the proposed TSVs filled with SWNTs/Sn can be utilized in CMOS based applications.

A Study on Micropattern Fabrication and Tribology Characteristics by Photolithography Process (포토리소그래피 공정에 의한 마이크로 패턴 제작과 tribology 특성 연구)

  • T.H. Jang;J.H. Park;Y.W. Kwon;B.R. Cho;T.G. Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.137-144
    • /
    • 2023
  • Micro electro mechanical systems (MEMS) and precision machines require excellent friction and wear characteristics to improve energy efficiency generated during sliding motion. In this study, DLC thin film with high hardness and low friction was deposited on STS304 substrate material by CVD method, and dot-shaped convex and concave micropatterns were fabricated by photolithography process. The diameter of the pattern was 20 ㎛, the pitch was 40 ㎛, and a pattern having a mesh type arrangement was fabricated and an abrasion test was performed. The results of the wear test on the micro pattern confirmed that the friction coefficient characteristics were improved compared to STS 304 and DLC thin films. In addition, in this result, the micro-pattern showed 11.4% more improved friction coefficient than the DLC thin film. The friction coefficient characteristics for convex and concave patterns of the same size showed almost similar results.

Development of Integration Pressure Sensor Using Piezoresistive Effect of Chemical Vapor Deposition (CVD) Produced Multilayer Graphene (CVD공정으로 제작된 멀티레이어 그래핀의 압저항 효과를 이용한 직접화된 압력센서 개발)

  • Dae-Yun Lim;Tae Won Ha;Chil-Hyoung Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.470-474
    • /
    • 2023
  • In this study, a diaphragm-type pressure sensor was developed using multi-layer(four-layer) graphene produced at 1 nm thickness by thermally transferring single-layer graphene produced by chemical vapor deposition (CVD) to a 6" silicon wafer. By measuring the gauge factor, we investigated whether it was possible to produce a pressure sensor of consistent quality. As a result of the measurement, the pressure sensor using multilayer graphene showed linearity and had a gauge factor of about 17.5. The gauge factor of the multilayer graphene-based pressure sensor produced through this study is lower than that of doped silicon, but is more sensitive than a general metal sensor, showing that it can be sufficiently used as a commercialized sensor.

International Conference on Electroceramics 2005 (2005년도 국제 전자세라믹 학술회의)

  • 한국세라믹학회
    • Proceedings of the Korean Ceranic Society Conference
    • /
    • 2005.06a
    • /
    • pp.1-112
    • /
    • 2005
  • This report is results of a research on recent R&D trends in electroceramics, mainly focusing on the papers submitted to the organizing committee of the International Conference on Electroceramics 2005 (ICE-2005) which was held at Seoul on 12-15 June 2005. About 380 electroceramics researchers attended at the ICE-2005 from 17 countries including Korea, presenting and discussing their recent results. Therefore, we can easily understand the recent research trends in the field of electroceramics by analyses of the subject and contents of the submitted papers. In addition to the analyses of the papers submitted to the ICE-2005, we also collected some informations about domestic and international research trends to help readers understand this report easily. We analysed the R&D trends on the basis of four main categories, that is, informatics electroceramics, energy and environment ceramics, processing and characterization of electroceramics, and emerging fields of electroceramics. Each main category has several sub-categories again. The informatics ceramics category includes integrated dielectrics and ferroelectrics, oxide and nitride semiconductors, photonic and optoelectronic devices, multilayer electronic ceramics and devices, microwave dielectrics and high frequency devices, and piezoelectric and MEMS applications. The energy and environment ceramics category has four sub-categories, that is, rechargable battery, hydrogen storage, fuel cells, and advanced energy conversion concepts. In the processing and characterization category, there exist domain, strain, and epitaxial dynamics and engineering sub-category, innovative processing and synthesis sub-category, nanostructured materials and nanotechnology sub- category, single crystal growth and characterization sub-category, theory and modeling sub-category. Nanocrystalline electroceramics, electroceramics for smart sensors, and bioceramics sub-categories are included to the emerging fields category. We hope that this report give an opportunity to understand the international research trend, not only to Korean ceramics researchers but also to science and technology policy researchers.

  • PDF

Electrical and Fluidic Characterization of Microelectrofluidic Bench Fabricated Using UV-curable Polymer (UV경화성 폴리머를 이용한 미소유체 통합접속 벤치 개발 및 전기/유체적 특성평가)

  • Youn, Se-Chan;Jin, Young-Hyun;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.475-479
    • /
    • 2012
  • We present a novel polymer fabrication process involving direct UV patterning of a hyperbranched polymer, AEO3000. Compared to PDMS, which is the most widely used polymer in bioMEMS devices, the present polymer has advantages with regard to electrode integration and fast fabrication. We designed a four-chip microelectrofluidic bench having three electrical pads and two fluidic I/O ports. We integrated a microfluidic mixer and a cell separator on the bench to characterize the interconnection performance and sample manipulation. Electrical and fluidic characterization of the microfluidic bench was performed. The measured electrical contact resistance was $0.75{\pm}0.44{\Omega}$, which is small enough for electrical applications, and the pressure drop was 8.3 kPa, which was 39.3% of the value in the tubing method. By performing yeast mixing and a separation test in the integrated module on the bench, we successfully showed that the interconnected chips could be used for bio-sample manipulation.

Fabrication and transcription estimation of prismless LGP for cellular phone using E-Mold technology (전열가열방식을 이용한 휴대전화용 복합기능 도광판 제작 및 전사성 평가)

  • Kim, Young-Kyun;Chung, Jae-Youp;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.186-193
    • /
    • 2009
  • In this paper, we adopted E-MOLD patent technology in order to fabricate Prismless LGP(Light Guide Panel) fur cellular phone and estimate the transcription of injection-molded parts. Then, we manufactured the Ni stamper fur Prismless LGP using MEMS process. And the stamper was installed in the movable heated core which is the key part of a patented mold. Using this mold, we manufactured injection-molded plastic LGP parts with different mold temperatures so that we investigate effect of the temperature on the transcription of the parts. The CAE analysis was also conducted in order to compare with the experimental results. The transcription of LGP parts with various mold temperature displayed $100^{\circ}C$(25.0nm), $140^{\circ}C$(48.4nm), $180^{\circ}C$(52.1nm) and when compared with stamper(521Inm), transcription was superior at $180^{\circ}C$. According to the CAE results, moldability was improved as mold temperature ($50^{\circ}C{\sim}180^{\circ}C$) increased, but when filling time($1{\sim}2sec$) increases, it decreased at $160^{\circ}C$. And transcription and moldability were improved markedly at glass transition temperature($140^{\circ}C$).

Measurement of Tensile Properties for Thin Aluminium Film by Using White Light Interferometer (백색광간섭계를 이용한 알루미늄 박막의 인장 물성 측정)

  • Kim, Sang-Kyo;Oh, Chung-Seog;Lee, Hak-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.471-478
    • /
    • 2010
  • Thin films play an important role in many technological applications including microelectronic devices, magnetic storage media, MEMS and surface coatings. It is well known that a thin film's material properties can be very different from the corresponding bulk properties and thus there has been a strong need for the development of a reliable test method to measure the mechanical properties of a thin film. We have developed an alternative and convenient test method to overcome the limitations of previous membrane deflection experiment and uniaxial tensile test by adopting a white light interferometer having sub-nanometer out-of-plane displacement resolution. The freestanding aluminium specimens are tested to verity the effectiveness of the test method developed and get the tensile properties. The specimens are 0.5 rum wide, $1{\mu}m$ thick and fabricated through MEMS processes including sputtering. 1 to 5 specimens are fabricated on Si dies. The membrane deflection experiments are carried out by using a homemade tester consisted of a motor-driven loading tip, a load cell, and 6 DOF alignment stages. The test system is compact enough to set it up beneath a commercial white light interferometric microscope. The white light fringes are utilized to align a specimen with the tester. The Young's modulus and yield point stress of the aluminium film are 62 GPa and 247 MPa, respectively.

Study on the Scan Field of Modified Octupole and Quadrupole Deflector in a Microcolumn (마이크로칼럼에서 변형된 4중극 디플렉터와 8중극 디플렉터의 스캔 영역 비교)

  • Kim, Young Chul;Kim, Ho-Seob;Ahn, Seong Joon;Oh, Tae-Sik;Kim, Dae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.1-7
    • /
    • 2018
  • In a microcolumn, a miniaturized electrostatic deflector is often adopted to scan an electron beam. Usually, a double octupole deflector is used because it can avoid excessive spherical aberrations by controlling the electron beam path close to the optical axis of the objective lens and has a wide scan field. Studies on microcolumns have been performed to improve the low throughput of an electron column through multiple column applications. On the other hand, as the number of microcolumns increases, the number of wires connected to the components of the microcolumn increases. This will result in practical problems during the process of connecting the wires to electronic controllers outside of the vacuum chamber. To reduce this problem, modified quadrupole and octupole deflectors were examined through simulation analysis by selecting an ultraminiaturized microcolumn with the Einzel lens eliminated. The modified deflectors were designed changing the size of each electrode of the conventional Si octupole deflector. The variations of the scan field and electric field strength were studied by changing the size of active electrodes to which the deflection voltage was to be applied. The scan field increased linearly with increasing deflection voltage. The scan field of the quadrupole deflector and the electric field strength at the center were calculated to be approximately 1.3 ~ 2.0 times larger than those of the octupole deflector depending on the electrode size.

반응성 스퍼터링에 의한 마이크로 박막 전지용 산화바나듐 박막의 제작 및 전기화학적 특성평가

  • 전은정;신영화;남상철;조원일;윤영수
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.49-49
    • /
    • 1999
  • 리튬 이차 전지를 박막화함으로써 개발된 고상의 마이크로 박막전지는 임의의 크기 및 형태로의 제작이 가능하며 액체전해질을 사용하지 않기 때문에 작동 중 열 또는 기체 생성물이 생기지 않아 높은 안정성을 갖으며 광범위한 사용 온도 범위를 가진다. 위와 같은 장점으로 인하여 충전 가능한 고상의 박막형 리튬 이차 전지는 점진적으로 그 사용 범위가 크게 확대될 것으로 판단된다. 즉, 초소형 전자, 전기 소자는 물론이며 조만간 실현될 스마트 카드, 셀루러폰 및 PCS와 같은 개인용 휴대 통신장비의 전력 공급계로의 응용이 가능할 것이다. 특히 장수명, 고에너지 밀도를 갖는 초소형의 전지를 필요로 하는 microelectronics, MEMS등에 이용될 수 있는 이차전지에 대한 요구가 점점 가시화 됨에 따라 박막공정을 이용한 이차전지개발기술이 요구되고 있으며, 박막제조기술을 이용한 고상의 박막형 및 전지에 관한 연구가 증가하고 있다. 본 연구에서는 박막형 리튬 이차전지의 Cathode 물질로써 비정질의 산화바나듐 박막을 반응성 스퍼터링에 의하여 상온에서 증착하였다. 박막형 이차전지의 여러 가지 Cathode 물질중 산화바나듐은 다른 물질들과는 달리 비정질 형태로 매우 우수한 충방전 특성을 나타낸다. 이런 특성으로 인해 다소 전지자체의 성능은 낮지만 저전력 저전압을 필요로 하는 초소형 전자 소자와 혼성되어 이용할 수 있는 잠재성이 매우 높은 물질이다. 바나듐 타겟의 경우 타겟 표면의 ageing에 따라 증착되는 박막의 특성이 매우 달라지게 되므로 presputtering의 시간을 변화시키면서 실험하였다. 또한 스퍼터링 중의 산소의 분압도 타겟의 ageing에 많은 영향을 주므로 실험 변수로 산소분압을 변화시키면서 실험하였다. 증착된 산화바나듐 박막의 표면은 scanning electron microscopy로 분석하였으며 구조 분석은 X-선 회절분석, X-ray photoelectron spectroscopy 그리고Auger electron spectroscope로 하였다. 증착된 산화바나듐 박막의 전기화학적 특성을 분석하기 위하여 리튬 메탈을 anode로 하고 EC:DMC=1:1, 1M LiPF6 액체 전해질을 사용한 Half-Cell를 구성하여 200회 이상의 정전류 충 방전 시험을 행하였다. Half-Cell test 결과 박막의 결정성과 표면상태에 따라 매우 다른 전지 특성을 나타내었다.

  • PDF

Design of Vertical Type Probe Tip Using Finite Element Analysis (유한요소해석을 이용한 수직형 프로브 팁의 설계)

  • Oh, Young-Ryun;Kim, Yun-Jae;Nam, Hyun-Suk;Park, Ung-Gi;Lee, Hak-Joo;Kim, Jung-Yub;Park, Jun-Hyub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.851-856
    • /
    • 2012
  • The design process of a micro-probe tip is very complicated and expensive. To avoid these problems, in this study, we used element (FE) analysis. To simplify design process. A new pre-probe tip (cobra-needle type) made of Ni and Co was designed by FE analysis. Experimental results were compared with those obtained by FE analysis to verify the reliability of the analysis. The contact force and over drive were respectively found to be 12.5 gf(Contact Force) and $100{\mu}m$(Over drive). We propose the new designed probe tip. Material of new designed probe tip is NiCo. Values of Property are 1~2 gf(Contact Force) and $100{\mu}m$(Over drive).