International Journal of Computer Science & Network Security
/
v.23
no.8
/
pp.9-16
/
2023
Speech can actively elicit feelings and attitudes by using words. It is important for researchers to identify the emotional content contained in speech signals as well as the sort of emotion that resulted from the speech that was made. In this study, we studied the emotion recognition system using a database in Arabic, especially in the Saudi dialect, the database is from a YouTube channel called Telfaz11, The four emotions that were examined were anger, happiness, sadness, and neutral. In our experiments, we extracted features from audio signals, such as Mel Frequency Cepstral Coefficient (MFCC) and Zero-Crossing Rate (ZCR), then we classified emotions using many classification algorithms such as machine learning algorithms (Support Vector Machine (SVM) and K-Nearest Neighbor (KNN)) and deep learning algorithms such as (Convolution Neural Network (CNN) and Long Short-Term Memory (LSTM)). Our Experiments showed that the MFCC feature extraction method and CNN model obtained the best accuracy result with 95%, proving the effectiveness of this classification system in recognizing Arabic spoken emotions.
We present a preprocessing method for an underwater target detection model based on a convolutional neural network. The acoustic characteristics of the ship show ambiguous expression due to the strong signal power of the low frequency. To solve this problem, we combine feature preprocessing methods with various feature scaling methods and spectrogram methods. Define a simple convolutional neural network model and train it to measure preprocessing performance. Through experiment, we found that the combination of log Mel-spectrogram and standardization and robust scaling methods gave the best classification performance.
Proceedings of the Korea Information Processing Society Conference
/
2020.11a
/
pp.971-974
/
2020
Infants express their physical and emotional needs to the outside world mainly through crying. However, most of parents find it challenging to understand the reason behind their babies' cries. Failure to correctly understand the cause of a baby' cry and take appropriate actions can affect the cognitive and motor development of newborns undergoing rapid brain development. In this paper, we propose an infant cry recognition system based on deep transfer learning to help parents identify crying babies' needs the same way a specialist would. The proposed system works by transforming the waveform of the cry signal into log-mel spectrogram, then uses the VGGish model pre-trained on AudioSet to extract a 128-dimensional feature vector from the spectrogram. Finally, a softmax function is used to classify the extracted feature vector and recognize the corresponding type of cry. The experimental results show that our method achieves a good performance exceeding 0.96 in precision and recall, and f1-score.
Park, JeongHyeon;Kim, MinSeo;Choi, HyukSoon;Moon, Nammee
Proceedings of the Korea Information Processing Society Conference
/
2022.11a
/
pp.597-599
/
2022
영아는 울음이라는 비언어적 의사 소통 방식을 사용하여 모든 욕구를 표현한다. 하지만 영아의 울음소리를 파악하는 것에는 어려움이 따른다. 영아의 울음소리를 해석하기 위해 많은 연구가 진행되었다. 이에 본 논문에서는 3D 특징 벡터를 이용한 영아의 울음소리 분류를 제안한다. Donate-a-corpus-cry 데이터 세트는 복통, 트림, 불편, 배고픔, 피곤으로 총 5 개의 클래스로 분류된 데이터를 사용한다. 데이터들은 원래 속도의 90%와 110%로 수정하는 방법인 템포조절을 통해 증강한다. Spectrogram, Mel-Spectrogram, MFCC 로 특징 벡터화를 시켜준 후, 각각의 2 차원 특징벡터를 묶어 3차원 특징벡터로 구성한다. 이후 3 차원 특징 벡터를 ResNet 과 EfficientNet 모델로 학습을 진행한다. 그 결과 2 차원 특징 벡터는 0.89(F1) 3 차원 특징 벡터의 경우 0.98(F1)으로 0.09 의 성능 향상을 보여주었다.
IEMEK Journal of Embedded Systems and Applications
/
v.18
no.5
/
pp.217-223
/
2023
In this paper, we propose a new model for the conditional generation of music, considering key and rhythm, fundamental elements of music. MIDI sheet music is converted into a WAV format, which is then transformed into a Mel Spectrogram using the Short-Time Fourier Transform (STFT). Using this information, key and rhythm details are classified by passing through two Convolutional Neural Networks (CNNs), and this information is again fed into the Music Transformer. The key and rhythm details are combined by differentially multiplying the weights and the embedding vectors of the MIDI events. Several experiments are conducted, including a process for determining the optimal weights. This research represents a new effort to integrate essential elements into music generation and explains the detailed structure and operating principles of the model, verifying its effects and potentials through experiments. In this study, the accuracy for rhythm classification reached 94.7%, the accuracy for key classification reached 92.1%, and the Negative Likelihood based on the weights of the embedding vector resulted in 3.01.
This paper proposes a novel spectral audio feature, spectral contrast MFCC (SCMFCC), and studies its performance on the musical genre classification. For a successful musical genre classifier, extracting features that allow direct access to the relevant genre-specific information is crucial. In this regard, the features based on the spectral contrast, which represents the relative distribution of the harmonic and non-harmonic components, have received increased attention. The proposed SCMFCC feature utilizes the spectral contrst on the mel-frequency cepstrum and thus conforms the conventional MFCC in a way more relevant for musical genre classification. By performing classification test on the widely used music DB, we compare the performance of the proposed feature with that of the previous ones.
We improve the performance of cardiac disorder classification by adding new temporal features extracted from continuous heart sound signals. We add three kinds of novel temporal features to a conventional feature based on mel-frequency cepstral coefficients (MFCC): Heart sound envelope, murmur probabilities, and murmur amplitude variation. In cardiac disorder classification and detection experiments, we evaluate the contribution of the proposed features to classification accuracy and select proper temporal features using the sequential feature selection method. The selected features are shown to improve classification accuracy significantly and consistently for neural network-based pattern classifiers such as multi-layer perceptron (MLP), support vector machine (SVM), and extreme learning machine (ELM).
Chemical reduction using catalysts and NaBH4 presents a promising approach for reducing 4-nitrophenol contamination while generating valuable byproducts. Covalent organic frameworks (COFs) emerge as a versatile platform for supporting catalysts due to their unique properties, such as high surface area and tunable pore structures. This study employs design of experiments (DOE) to systematically optimize the synthesis of Cu embedded COF (Cu/COF) catalysts for the reduction of 4-nitrophenol. Through a series of experimental designs, including definitive screening, mixture method, and central composition design, the main synthesis parameters influencing Cu/COF formation are identified and optimized: MEL:TPA:DMSO = 0.31:0.36:0.33. Furthermore, the optimal synthesis temperature and time were predicted to be 195 ℃ and 14.7 h. Statistical analyses reveal significant factors affecting Cu/COF synthesis, facilitating the development of tailored nanostructures with enhanced catalytic performance. The catalytic efficacy of the optimized Cu/COF materials is evaluated in the reduction of 4-nitrophenol, demonstrating promising results in line with the predictions from DOE.
Phenolic compounds are prevalent as toxins or environmental pollutants, but they are also widely used as drugs for various purpose including anticancer agent. A novel biphenolic compound, bis(2-hydroxy-3-tert-butyl-5-methylphenyl)methane (GERI-BPO02-A) was isolated from the fermentation broth of Aspergillus fumigatus F93 previously, and it has revealed cytotoxicity against human solid tumor cells. Its effective doses that cause 50% inhibition of cell growth in vitro against non-small cell lung cancer cell A549, ovarian cancer cell SK-OV-3, skin cancer cell SK-MEL-2 and central nerve system cancer cell XF498 were 8.24, 10.60, 8.83, $9.85\mug/ml$ respectively. GERI-BPO02-A has also revealed cytotoxicity against P-glycoproteinexpressed human colon cancer cell HCT15 and its multidrug-resistant subline HCT15/CL02, and its cytotoxicity was not affected by P-glycoprotein. We have also tested cytotoxicities of structurally related compounds of GERI-BPO02-A such as diphenylmethane, 1,1-bis(3,4dimethylphenyl)ethane, 2,2-diphenylpropane, 2-benzylpyridine, 3-benzylpyridine, $4,4^I-di-tert-butylphenyl$, bibenzyl, $2,2^I-dimethylbibenzyl$, cis-stilbene, trans-stilbene, 3-tert-butyl-4-hydroxy-5-methylphenyisulfide, sulfadiazine and sulfisomidine for studying of structure and activity relationship, and from these data we could suppose that hydroxyl group of GERI-BPO02A conducted important role in its cytotoxicity.
In this paper, we propose a sound event detection method using a multi-channel multi-scale neural networks for sound sensing home monitoring for the hearing impaired. In the proposed system, two channels with high signal quality are selected from several wireless microphone sensors in home. The three features (time difference of arrival, pitch range, and outputs obtained by applying multi-scale convolutional neural network to log mel spectrogram) extracted from the sensor signals are applied to a classifier based on a bidirectional gated recurrent neural network to further improve the performance of sound event detection. The detected sound event result is converted into text along with the sensor position of the selected channel and provided to the hearing impaired. The experimental results show that the sound event detection method of the proposed system is superior to the existing method and can effectively deliver sound information to the hearing impaired.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.