• 제목/요약/키워드: MEK1

검색결과 224건 처리시간 0.02초

Extracellular Signal-regulated Kinase Activation Is Required for Serine 727 Phosphorylation of STAT3 in Schwann Cells in vitro and in vivo

  • Lee, Hyun-Kyoung;Jung, Jun-Yang;Lee, Sang-Hwa;Seo, Su-Yeong;Suh, Duk-Joon;Park, Hwan-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권3호
    • /
    • pp.161-168
    • /
    • 2009
  • In the peripheral nerves, injury-induced cytokines and growth factors perform critical functions in the activation of both the MEK/ERK and JAK/STAT3 pathways. In this study, we determined that nerve injury-induced ERK activation was temporally correlated with STAT3 phosphorylation at the serine 727 residue. In cultured Schwann cells, we noted that ERK activation is required for the serine phosphorylation of STAT3 by neuropoietic cytokine interleukin-6 (IL-6). Serine phosphorylated STAT3 by IL-6 was transported into Schwann cell nuclei, thereby indicating that ERK may regulate the transcriptional activity of STAT3 via the induction of serine phosphorylation of STAT3. Neuregulin-1 (NRG) also induced the serine phosphorylation of STAT3 in an ERK-dependent fashion. In contrast with the IL-6 response, serine phosphorylated STAT3 induced by NRG was not detected in the nucleus, thus indicating the non-nuclear function of serine phosphorylated STAT3 in response to NRG. Finally, we determined that the inhibition of ERK prevented injury-induced serine phosphorylation of STAT3 in an ex-vivo explants culture of the sciatic nerves. Collectively, the results of this study show that ERK may be an upstream kinase for the serine phosphorylation of STAT3 induced by multiple stimuli in Schwann cells after peripheral nerve injury.

Tectoridin, a Poor Ligand of Estrogen Receptor α, Exerts Its Estrogenic Effects via an ERK-Dependent Pathway

  • Kang, Kyungsu;Lee, Saet Byoul;Jung, Sang Hoon;Cha, Kwang Hyun;Park, Woo Dong;Sohn, Young Chang;Nho, Chu Won
    • Molecules and Cells
    • /
    • 제27권3호
    • /
    • pp.351-357
    • /
    • 2009
  • Phytoestrogens are the natural compounds isolated from plants, which are structurally similar to animal estrogen, $17{\beta}$-estradiol. Tectoridin, a major isoflavone isolated from the rhizome of Belamcanda chinensis. Tectoridin is known as a phytoestrogen, however, the molecular mechanisms underlying its estrogenic effect are remained unclear. In this study we investigated the estrogenic signaling triggered by tectoridin as compared to a famous phytoestrogen, genistein in MCF-7 human breast cancer cells. Tectoridin scarcely binds to ER ${\alpha}$ as compared to $17{\beta}$-estradiol and genistein. Despite poor binding to ER ${\alpha}$, tectoridin induced potent estrogenic effects, namely recovery of the population of cells in the S-phase after serum starvation, transactivation of the estrogen response element, and induction of MCF-7 cell proliferation. The tectoridin-induced estrogenic effect was severely abrogated by treatment with U0126, a specific MEK1/2 inhibitor. Tectoridin promoted phosphorylation of ERK1/2, but did not affect phosphorylation of ER ${\alpha}$ at $Ser^{118}$. It also increased cellular accumulation of cAMP, a hallmark of GPR30-mediated estrogen signaling. These data imply that tectoridin exerts its estrogenic effect mainly via the GPR30 and ERK-mediated rapid nongenomic estrogen signaling pathway. This property of tectoridin sets it aside from genistein where it exerts the estrogenic effects via both an ER-dependent genomic pathway and a GPR30-dependent nongenomic pathway.

Combination of BEZ235 and Metformin Has Synergistic Effect on Cell Viability in Colorectal Cancer Cells

  • Kim, Taewan;Kim, Taehyung;Choi, Soonyoung;Ko, Hyeran;Park, Deokbae;Lee, Youngki
    • 한국발생생물학회지:발생과생식
    • /
    • 제22권2호
    • /
    • pp.133-142
    • /
    • 2018
  • Patients with type II diabetes mellitus are more susceptible to colorectal cancer (CRC) incidence than non-diabetics. The anti-diabetic drug metformin is most commonly prescribed for the treatment of this disease and has recently shown antitumor effect in preclinical studies. The aberrant mutational activation in the components of RAS/RAF/MEK/ERK and PI3K/AKT/mTOR signaling pathway is very frequently observed in CRC. We previously reported that metformin inhibits the phosphorylation of ERK and BEZ235, a dual inhibitor of PI3K and mTOR, has anti-tumor activity against HCT15 CRC cells harboring mutations of KRAS and PIK3CA. Therefore, we hypothesized that simultaneous inhibition of two pathways by combining metformin with BEZ235 could be more effective in the suppression of proliferation than single agent treatment in HCT15 CRC cells. Here, we investigated the combinatory effect of metformin and BEZ235 on the cell survival in HCT15 CRC cells. Our study shows that both of the two signaling pathways can be blocked by this combinational strategy: metformin suppressed both pathways by inhibiting the phosphorylation of ERK, 4E-BP1 and S6, and BEZ235 suppressed PI3K/AKT/mTOR pathway by reducing the phosphorylation of 4E-BP1 and S6. This combination treatment synergistically reduced cell viability. The combination index (CI) values ranged from 0.44 to 0.88, indicating synergism for the combination. These results offer a preclinical rationale for the potential therapeutic option for the treatment of CRC.

N-포밀 아스파르테임의 산화 탈포밀 반응에 의한 아스파르테임의 제조 방법 (Synthetic Method of Aspartame via Oxidative Deformylation of N-Formyl Aspartame)

  • 박동현;이윤식
    • 공업화학
    • /
    • 제1권1호
    • /
    • pp.91-99
    • /
    • 1990
  • For-${\alpha}$-APM을 For-Asp anhydride와 Phe-OMe를 MEK, $CH_3CN$, 물 등의 용매를 사용하여 반응시켜 효율적으로 합성하였다. For-${\alpha}$-APM과 For-${\beta}$-APM의 혼합물로부터 순수한 For-${\alpha}$-APM의 회수는 pH 4.00에서의 연속적인 분별추출로 분리 수거가 가능하였다. $H_2_O2$ 공급원으로 $H_2_O2$/THF, 과탄산소다, $H_2_O2$/HCl/MeOH 등의 다양한 산화계를 사용하여, $H_2_O2$에 의한 산화방법으로 탈포밀반응을 성공적으로 수행하여 높은 수율로 아스파르테임을 얻을 수 있었다. 이 때 HCl이나 TsOH와 같은 산이 $H_2_O2$의 분해를 억제시키고 산화능을 증대시킴으로써 탈포밀 반응의 효율을 높일 수 있었다.

  • PDF

Apigenin and Wogonin Regulate Epidermal Growth Factor Receptor Signaling Pathway Involved in MUC5AC Mucin Gene Expression and Production from Cultured Airway Epithelial Cells

  • Sikder, Md. Asaduzzaman;Lee, Hyun Jae;Ryu, Jiho;Park, Su Hyun;Kim, Ju-Ock;Hong, Jang-Hee;Seok, Jeong Ho;Lee, Choong Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • 제76권3호
    • /
    • pp.120-126
    • /
    • 2014
  • Background: We investigated whether wogonin and apigenin significantly affect the epidermal growth factor receptor (EGFR) signaling pathway involved in MUC5AC mucin gene expression, and production from cultured airway epithelial cells; this was based on our previous report that apigenin and wogonin suppressed MUC5AC mucin gene expression and production from human airway epithelial cells. Methods: Confluent NCI-H292 cells were pretreated with wogonin or apigenin for 15 minutes or 24 hours and then stimulated with epidermal growth factor (EGF) for 24 hours or the indicated periods. Results: We found that incubation of NCI-H292 cells with wogonin or apigenin inhibited the phosphorylation of EGFR. The downstream signals of EGFR such as phosphorylation of MEK1/2 and ERK1/2 were also inhibited by wogonin or apigenin. Conclusion: The results suggest that wogonin and apigenin inhibits EGFR signaling pathway, which may explain how they inhibit MUC5AC mucin gene expression and production induced by EGF.

반도체 작업환경의 VOCs 농도분포 특성 (Emission Characteristics of VOCs Distributions in Semiconductor Workplace)

  • 이정주
    • 한국도시환경학회지
    • /
    • 제18권4호
    • /
    • pp.503-509
    • /
    • 2018
  • 본 연구에서는 양자전이 비행시간질량분석기(PTR-ToF-MS)를 이용하여 반도체 공정의 작업환경(PHOTO, FPD, OLED, WET 공정)에서 VOCs를 실시간으로 모니터링하였다. 작업환경에서 평균 VOCs 농도는 PHOTO 6.5 ppm, FPH 6.4 ppm, WET 2.0 ppm, OLED 1.3 ppm이었다. VOCs 중 methyl ethyl ketone이 2.8 ppm (69%), acetaldehyde가 0.5 ppm (13.2%)로 나타났다. 반도체 공정 특성에 따라 다양한 VOCs 가 작업환경에서 관측되었다. 관측된 VOCs 농도는 작업환경기준보다 낮지만, 이러한 VOCs를 지속적으로 모니터링하여 효과적으로 관리해 나갈 필요가 있다.

Pt와 Ir을 담지한 촉매에 의한 휘발성유기화합물들의 산화특성 (Oxidation characterization of VOCs(volatile organic compounds) over pt and ir supported catalysts)

  • 김문찬;유명숙
    • 분석과학
    • /
    • 제18권2호
    • /
    • pp.130-138
    • /
    • 2005
  • VOCs (Volatile Organic Compounds)는 대기오염의 주원인으로서 인식되어왔다. 촉매산화는 저온에서 높은 효율을 나타내기 때문에 VOCs 제거를 위한 가장 중요한 처리기술중 하나이다. 이 연구에서는 $TiO_2$ 담체에 Pt, Ir 그리고 Pt-Ir을 담시지켜 촉매를 제조하였다. 반응물로서 Xylene을 사용하였다. 단일 또는 두 가지 이상의 촉매들은 함침법에 의해 준비하였고, X-ray diffraction (XRD), X-ray photo electron spectroscopy (XPS), transmittence electron microscophy (TEM) 분석을 통하여 특성화하였다. 그 결과 Pt 촉매는 Ir 촉매에 비해 더 높은 전환율을 나타내었고, Pt-Ir 촉매는 가장 높은 전환율을 나타내었다. VOCs 산화에서, Pt-Ir 촉매는 다양한 활성점을 나타내었고 그것은 Pt의 metal 영역을 강화시켰다. 따라서 두 가지 금속으로 이루어진 촉매가 단일 금속으로 이루어진 촉매에 비해 VOCs 전환율이 더 높았다. 동역학적으로 VOCs 산화는 1차 반응이다. 이 연구에서 Pt에 Ir을 소량 첨가함으로써 VOCs 산화반응에 효과적이었다.

Magnolol Inhibits iNOS, p38 Kinase, and NF-κB/Rel in Murine Macrophages

  • Li Mei Hong;Chang In-Youp;Youn Ho-Jin;Jang Dae-Sik;Kim Jin-Sook;Jeon Young-Jin
    • Toxicological Research
    • /
    • 제22권3호
    • /
    • pp.293-299
    • /
    • 2006
  • We demonstrate that magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, inhibits LPS-induced expression of iNOS gene in RAW 264.7 cells(murine macrophage cell line). Treatment of RAW 264.7 cells with magnolol inhibited LPS-stimulated nitric oxide production in a dose-related manner. RT-PCR analysis showed that the decrease of NO was due to the inhibition of iNOS gene expression. Western immunoblot analysis of phosphorylate p38 kinase showed magnolol significantly inhibited the phosphorylation of p38 kinase which is important in the regulation of iNOS gene expression. The specific p38 inhibiter SB203580 abrogated the LPS-induced NO generation and iNOS expression, whereas the selective MEK-1 inhibitor PD98059 did not affect the NO induction. Immunostaining of p65 and reporter gene assay showed that magnolol inhibited NF-${\kappa}/Rel$ nuclear translocation and transcriptional activation, respectively. Collectively, this series of experiments indicates that magnolol inhibits iNOS gene expression by blocking NF-k/Rel and p38 kinase signaling. Due to the critical role that NO release plays in mediating inflammatory responses, the inhibitory effects of magnolol or iNOS suggest that magnolol may represent a useful anti-inflammatory agent.

Magnolol Inhibits LPS-induced NF-${\kappa}B$/Rel Activation by Blocking p38 Kinase in Murine Macrophages

  • Li, Mei Hong;Kothandan, Gugan;Cho, Seung-Joo;Huong, Pham Thi Thu;Nan, Yong Hai;Lee, Kun-Yeong;Shin, Song-Yub;Yea, Sung-Su;Jeon, Young-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권6호
    • /
    • pp.353-358
    • /
    • 2010
  • This study demonstrates the ability of magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, to inhibit LPS-induced expression of iNOS gene and activation of NF-${\kappa}B$/Rel in RAW 264.7 cells. Immunohisto-chemical staining of iNOS and Western blot analysis showed magnolol to inhibit iNOS gene expression. Reporter gene assay and electrophoretic mobility shift assay showed that magnolol inhibited NF-${\kappa}B$/Rel transcriptional activation and DNA binding, respectively. Since p38 is important in the regulation of iNOS gene expression, we investigated the possibility that magnolol to target p38 for its anti-inflammatory effects. A molecular modeling study proposed a binding position for magnolol that targets the ATP binding site of p38 kinase (3GC7). Direct interaction of magnolol and p38 was further confirmed by pull down assay using magnolol conjugated to Sepharose 4B beads. The specific p38 inhibitor SB203580 abrogated the LPS-induced NF-${\kappa}B$/Rel activation, whereas the selective MEK-1 inhibitor PD98059 did not affect the NF-${\kappa}B$/Rel. Collectively, the results of the series of experiments indicate that magnolol inhibits iNOS gene expression by blocking NF-${\kappa}B$/Rel and p38 kinase signaling.

Cross-talk between STAT6 and Ras/MAPK Pathway for the IL-4-mediated T Cell Survival

  • So, Eui-Young;Jang, Ji-Young;Lee, Choong-Eun
    • BMB Reports
    • /
    • 제34권6호
    • /
    • pp.578-583
    • /
    • 2001
  • As a prototypic Thl vs Th2 cytokine, IFN-$\gamma$ and IL-4 activate distinct STAT proteins, STAT1 and STATE, respectively. In cytokine-producing Jurkat T cells, IL-4 is effectively rescued from cell death that is induced by dexamethasone, but IFN-$\gamma$ failed to do so. Since the Ras/MAPK pathway is known to play an important role in cytokine-induced cell survival, we investigated the mechanism of T cell survival through the analysis of functional cross-talk between Ras/MAPK and distinct STAT proteins that are activated by IL-4 and IFN-$\gamma$. Although IL-4 and IFN-$\gamma$ each induced the activation of STATE and STATI. in Jurkat T cells, respectively, only IL-4 was capable of inducing MAPK. Along with tyrosine kinase inhibitors, MEK/MAPK inhibitors also caused a significant suppression of the IL-4-induced STATE activity. This suggests a positive regulation of STATE by MAPK during IL-4 signal transduction. Furthermore, transfection studies with dominant active (da) vs dominant negative (dn) Ras revealed that daRas, but not dnRas, selectively up-regulated the expression and activity of STATE with a concomitant increase in MAPK activity. These results, therefore, suggest that there is a functional cross-talk between the Ras/MAPK and Jak/STAT6 pathways, which may have a role in the IL-4-induced T cell survival.

  • PDF