• Title/Summary/Keyword: MEK1

Search Result 224, Processing Time 0.025 seconds

Regulation of Mitogen Activated Protein Kinase Activity by Solubilized Matrigel in the Preimplantation Mouse Embryos (생쥐 착상 전 배아에서 용해된 Matrigel에 의한 Mitogen Activated Protein Kinase 활성의 조절)

  • 강병문;정병목;계명찬
    • Development and Reproduction
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • To elucidate the mechanism underlying the embryotropic effect of extracellular matrix(ECM) on the preimplantation development of mammalian embryos, the involvement of mitogen-activated protein kinase(MAPK) downstream the integrin signaling was examined in mouse blastocysts. Blastocysts were cultured in the presence of growth factor-reduced(GFR) Matrigel(0.5%, v/v). MAPK activity was measured by in vitro phosphorylation of myelin basic protein by the Erk1/2 antibody immunoprecipitates of embryonic extract following the Matrigei treatment. MAPK activity of the early blastocysts rapidly increased within 10 min fo1lowing the Matrigel treatment. When the embryos were cultured for 12 h in the presence of Matrigel, the MAPK activity was significantly higher than that ot the control embryos. PD098059, a MAPK kinase(MEK) inhibitor, attenuated the effect of Matrigel on the change in MAPK activity. Taken together, it suggested that the embryotropic effect of ECM proteins might be mediated by the activation of MAPK cascade.

  • PDF

Nerve Growth Factor Activates Brain-derived Neurotrophic Factor Promoter IV via Extracellular Signal-regulated Protein Kinase 1/2 in PC12 Cells

  • Park, So Yun;Lee, Ji Yun;Choi, Jun Young;Park, Mae Ja;Kim, Dong Sun
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.237-243
    • /
    • 2006
  • Brain-derived neurotrophic factor (BDNF) is a neuromodulator of nociceptive responses in the dorsal root ganglia (DRG) and spinal cord. BDNF synthesis increases in response to nerve growth factor (NGF) in trkA-expressing small and medium-sized DRG neurons after inflammation. Previously we demonstrated differential activation of multiple BDNF promoters in the DRG following peripheral nerve injury and inflammation. Using reporter constructs containing individual promoter regions, we investigated the effect of NGF on the multiple BDNF promoters, and the signaling pathway by which NGF activates these promoters in PC12 cells. Although all the promoters were activated 2.4-7.1-fold by NGF treatment, promoter IV gave the greatest induction. The p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, phosphatidylinositol 3-kinase (PI-3K) inhibitor, LY294003, protein kinase A (PKA) inhibitor, H89, and protein kinase C (PKC) inhibitor, chelerythrine, had no effect on activation of promoter IV by NGF. However, activation was completely abolished by the MAPK kinase (MEK) inhibitors, U0126 and PD98059. In addition, these inhibitors blocked NGF-induced phosphorylation of extracellular signal-regulated protein kinase (ERK) 1/2. Taken together, these results suggest that the ERK1/2 pathway activates BDNF promoter IV in response to NGF independently of NGF-activated signaling pathways involving PKA and PKC.

Screening for Mucosal Protective Effects of Various Korean Herbal Medicine Extracts in Gastroesophageal Reflux Disease (한방 추출물의 역류성 식도염 점막보호 효과에 대한 스크리닝)

  • Il-ha Jeong;Min Ju Kim;Mi-Rae Shin;Seong-Soo Roh
    • The Korea Journal of Herbology
    • /
    • v.39 no.1
    • /
    • pp.39-47
    • /
    • 2024
  • Objectives : This study evaluates how various traditional Korean herbal medicines assess MUC5AC expression for esophageal mucosal defense and analyzes the associated mechanisms involved in inflammation. Methods : Forty types of traditional Korean herbal medicines were assessed for in vitro antioxidant activities, and the real-time PCR method was employed to analyze MUC5AC expression under pH 4.5 conditions in human esophageal epithelial cells (HET-1A). Eight types of Korean herbal medicines were evaluated for in vitro antioxidant activities, and Reactive oxygen specise (ROS) expression was analyzed under bile salt (480 𝜇M) and pH 5.5 conditions in human esophageal epithelial cells (HET-1A). Simulation experiments involving bile salts and acidity were conducted for one hour to assess the efficacy of four drugs, and the activities of Mitogen-activated Protein Kinase (MEK), Nuclear Factor Kappa B (NF-𝜅B), and Cyclooxygenase-2 (COX-2) were detected through Western blot analysis. Results : Compared to the Normal group, the Control group exhibited higher ROS generation. Such increased ROS levels were significantly reduced by four extracts: Citrus Unshius Pericarpium (CUP), Cnidium officinale Rhizoma (CR), Ginseng Radix (GR), and Linderae Radix (LR). The protein expression of COX-2 decreased with the treatment of LR, CUP, and CR. Particularly, CUP and CR exhibited superior effects compared to other groups in inhibiting the phosphorylation of NF-𝜅B. Conclusion : Based on the results obtained, we have identified drugs that inhibit oxidative stress and inflammation caused by bile acid in esophageal epithelial cells. Our future plans involve comparing and analyzing the efficacy of these herbal medicines through animal experiments.

Blockage of Autophagy Rescues the Dual PI3K/mTOR Inhibitor BEZ235-induced Growth Inhibition of Colorectal Cancer Cells

  • Oh, Iljoong;Cho, Hyunchul;Lee, Yonghoon;Cheon, Minseok;Park, Deokbae;Lee, Youngki
    • Development and Reproduction
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Molecular targeting for the altered signaling pathways has been proven to be effective for the treatment of many types of human cancer, including colorectal cancer (CRC). The dual phosphatidylinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitor BEZ235 has shown to exhibit potent antitumor activity against solid tumors. Autophagy is a cellular lysosomal catabolic process to maintain metabolic homeostasis, which has been known to be induced in response to many therapeutic agents in cancer cells. This process is negatively regulated by mTOR and often acts as prosurvival or prodeath mechanism following cancer therapeutics. The current study was designed to investigate the antiproliferation activity of BEZ235 and to evaluate the role of autophagy induced by BEZ235 using HCT15 CRC cells bearing ras oncogene mutation. We found that BEZ235 decreases cell viability, which was mostly dependent on $G_1$ arrest of cell cycle via suppression of cyclin A expression. BEZ235 affects PI3K/Akt/mTOR signaling pathway by increasing the phosphorylation of AKT at $Ser^{473}$ and RAS/RAF/MEK/ERK pathway by decreasing the phosphorylation of ERK at $Tyr^{204}$. BEZ235 also stimulated autophagy induction as evidenced by the increased expression of LC3-II and abundant acidic vesicular organelles (AVOs) in the cytoplasm. In addition, the combination of BEZ235 with autophagy inhibitor chloroquine, a known antagonist of autophagy, counteracted the antiproliferation effect of BEZ235. Thus, our study indicates that autophagy induced in response to BEZ235 treatment appears to act as cell death mechanism in HCT15 CRC cells.

CRM646-A, a Fungal Metabolite, Induces Nucleus Condensation by Increasing Ca2+ Levels in Rat 3Y1 Fibroblast Cells

  • Asami, Yukihiro;Kim, Sun-Ok;Jang, Jun-Pil;Ko, Sung-Kyun;Kim, Bo Yeon;Osada, Hiroyuki;Jang, Jae-Hyuk;Ahn, Jong Seog
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.31-37
    • /
    • 2020
  • We previously identified a new heparinase inhibitor fungal metabolite, named CRM646-A, which showed inhibition of heparinase and telomerase activities in an in vitro enzyme assay and antimetastatic activity in a cell-based assay. In this study, we elucidated the mechanism by which CRM646-A rapidly induced nucleus condensation, plasma membrane disruption and morphological changes by increasing intracellular Ca2+ levels. Furthermore, PD98059, a mitogen-activated protein kinase (MEK) inhibitor, inhibited CRM646-A-induced nucleus condensation through ERK1/2 activation in rat 3Y1 fibroblast cells. We identified CRM646-A as a Ca2+ ionophore-like agent with a distinctly different chemical structure from that of previously reported Ca2+ ionophores. These results indicate that CRM646-A has the potential to be used as a new and effective antimetastatic drug.

Signaling Pathway of Lysophosphatidic Acid-Induced Contraction in Feline Esophageal Smooth Muscle Cells

  • Nam, Yun Sung;Suh, Jung Sook;Song, Hyun Ju;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.139-147
    • /
    • 2013
  • Lysolipids such as LPA, S1P and SPC have diverse biological activities including cell proliferation, differentiation, and migration. We investigated signaling pathways of LPA-induced contraction in feline esophageal smooth muscle cells. We used freshly isolated smooth muscle cells and permeabilized cells from cat esophagus to measure the length of cells. Maximal contraction occurred at $10^{-6}M$ and the response peaked at 30s. To identify LPA receptor subtypes in cells, western blot analysis was performed with antibodies to LPA receptor subtypes. LPA1 and LPA3 receptor were detected at 50 kDa and 44 kDa. LPA-induced contraction was almost completely blocked by LPA receptor (1/3) antagonist KI16425. Pertussis toxin (PTX) inhibited the contraction induced by LPA, suggesting that the contraction is mediated by a PTX-sensitive G protein. Phospholipase C (PLC) inhibitors U73122 and neomycin, and protein kinase C (PKC) inhibitor GF109203X also reduced the contraction. The PKC-mediated contraction may be isozyme-specific since only $PKC{\varepsilon}$ antibody inhibited the contraction. MEK inhibitor PD98059 and JNK inhibitor SP600125 blocked the contraction. However, there is no synergistic effect of PKC and MAPK on the LPA-induced contraction. In addition, RhoA inhibitor C3 exoenzyme and ROCK inhibitor Y27632 significantly, but not completely, reduced the contraction. The present study demonstrated that LPA-induced contraction seems to be mediated by LPA receptors (1/3), coupled to PTX-sensitive G protein, resulting in activation of PLC, PKC-${\varepsilon}$ pathway, which subsequently mediates activation of ERK and JNK. The data also suggest that RhoA/ROCK are involved in the LPA-induced contraction.

Increased Sensitivity of ras-transformed Cells to Capsaicin-induced Apoptosis

  • Kang, Hye-Jung;Yunjo Soh;Kim, Mi-Sung;Lee, Eun-Jung;Surh, Young-Joon;Kim, Seung-Hee;Aree Moon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.107-107
    • /
    • 2001
  • During the last decade, enormous progress has been made on the biological significance of apoptosis. Since ras is among the most central molecule in signaling, we asked if ras regulates apoptotic pathway. We have previously shown that H-ras, but not N-ras, induces an invasiveness and motility in human breast epithelial cells (MCF10A), while both H-ras and N-ras induce transformed phenotype. In this study, we wished to seek a chemopreventive agent that effectively induces apoptosis in H-ras-activated cells. Here we show that capsaicin, the major pungent phytochemical in red pepper, induces caspase 3-involved apoptosis selectively in H-ras activated MCF10A cells while the parental MCF10A cells are not effected. In order to study the molecular mechanisms for the increased sensitivity of H-ras MCF10A cells to capsaicin-induced apoptosis, activation of ras downstream signaling molecules, mitogen-activated protein kinases (MAPKinases), upon capsaicin treatment was investigated. Phosphorylated forms of JNK1 and p38 MAPKinase were prominently increased whereas activated ERK-1/2 was decreased by capsaicin in ras-activated cells. The parental cells did not respond to capsaicin, suggesting that capsaicin selectively induces apoptosis through modulating activities of ras downstream signaling molecules in H-ras-activated cells. Studies using chemical inhibitors (CPT-cAMP, SB203580 and PD98059) and dominant negative constructs of JNKl, p38 and MEK show that activation of JNK1 and p38 MAPKinase, but not ERK-1/2, is critical for ras-mediated apoptosis by capsaicin.

  • PDF

Induction of Apoptosis in Human Leukemic Cell Lines by Diallyl Disulfide via Modulation of EGFR/ERK/PKM2 Signaling Pathways

  • Luo, Nian;Zhao, Lv-Cui;Shi, Qing-Qiang;Feng, Zi-Qiang;Chen, Di-Long;Li, Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3509-3515
    • /
    • 2015
  • Background: Diallyl disulfide (DADS) may exert potent anticancer action both in vitro and in vivo. Although its effects on cancer are significant, the underlying mechanisms remain unknown. In this study, we sought to elucidate possible links between DADS and pyruvate kinase (PKM2). Materials and Methods: $KG1{\alpha}$, a leukemia cell line highly expressing PKM2 was used with a cell counting kit (CCK)-8 and flow cytometry (FCM) to investigate the effects of DADS. Relationships between PKM2 and DADS associated with phosphorylation of EGFR, ERK1/2 and MEK, were assessed by western blot analysis. Results: In $KG1{\alpha}$ cells highly expressing PKM2, we found that DADS could affect proliferation, apoptosis and EGFR/ERK/PKM2 signaling pathways, abrogating EGF-induced nuclear accumulation of PKM2. Conclusions: These results suggested that DADS suppressed the proliferation of $KG1{\alpha}$ cells, providing evidence that its proapoptotic effects are mediated through the inhibition of EGFR/ERK/PKM2 signaling pathways.

Study on the Anti-inflammatory Effect and Mechanism of Prunus mume Extract Regarding NF-κB (NF-κB 조절을 통한 오매추출물의 항염효과 및 작용기작에 관한 연구)

  • Seo, Won-Sang;Oh, Han-Na;Park, Woo-Jung;Um, Sang-Young;Lee, Dae-Woo;Kang, Sang-Mo
    • KSBB Journal
    • /
    • v.29 no.1
    • /
    • pp.50-57
    • /
    • 2014
  • NF-${\kappa}B$ is a transcriptional factor which is involved in many biological processes including immunity, inflammation, and cell survival. Many investigators studied on the mechanism involved in activation of NF-${\kappa}B$ signalling pathway via ubiquitination and degradation of $I{\kappa}B$ regarding skin disease. Some specific molecules including Akt, MEK, p38 MAP Kinase, Stat3, et al. represent convergence points and key regulatory proteins in signaling pathways controlling cellular events such as growth and differentiation, energy homeostasis, and the response to stress and inflammation. Ultraviolet (UV) irradiation has many adverse effects on skin, including inflammation, alteration in the extracellular matrix, cellular senescence, apoptosis and skin cancer. Prunus mume, a naturally derived plant extract, has beneficial biological activities as blood fluidity improvement, anti-fatigue action, antioxidative and free radical scavenging activities, inhibiting the motility of Helicobacter pyolri. Previous reports on various beneficial function prompted us to investigate UVB-induced or other immunostimulated biological marker regarding P. mume extract. P. mume extract suppresses UVB-induced cyclooxygenase-2 (COX-2) expression in mouse skin epidermal JB6 P+ cells. The activation of activator protein-1 and nuclear factor-${\kappa}B$ induced by UVB was dose-dependently inhibited by P. mume extract treatment. This results suggest that P. mume extracts might be used as a potential agents for protection of inflammation or UVB induced skin damage.

A study on the effect of microgroove-fibronectin complex titanium plate on the expression of various cell behavior-related genes in human gingival fibroblasts (인간치은섬유아세포의 다양한 세포행동 관련 유전자발현에 마이크로그루브-파이브로넥틴 복합 티타늄표면이 미치는 영향에 대한 연구)

  • Hwang, Yu Jeong;Lee, Won Joong;Leesungbok, Richard;Lee, Suk Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.3
    • /
    • pp.150-161
    • /
    • 2022
  • Purpose: To determine the effects of the microgroove-fibronectin complex surface on the expression of various genes related to cellular activity in human gingival fibroblasts. Materials and Methods: Smooth titanium specimens (NE0), acid-treated titanium specimens (E0), microgroove and acid-treated titanium specimens (E60/10), fibronectin-fixed smooth titanium specimens (NE0FN), acid-treated and fibronectin-immobilized titanium specimens (E0FN), and microgroove and acid-treated titanium specimens immobilized with fibronectin (E60/10FN) were prepared. Real-time polymerase chain reaction experiments were conducted on 44 genes related to cell behavior of human gingival fibroblasts. Results: Adhesion and proliferation of human gingival fibroblast on microgroove-fibronectin complex titanium were activated through four types of signaling pathway. Integrin α5, Integrin β1, Integrin β3, Talin-2, which belong to the focal adhesion pathway, AKT1, AKT2, NF-κB, which belong to the PI3K-AKT signaling pathway, MEK2, ERK1, ERK2, which belong to the MAPK signaling pathway, and Cyclin D1, CDK4, CDK6 genes belonging to the cell cycle signaling pathway were upregulated on the microgroove-fibronectin complex titanium surface (E60/10FN). Conclusion: The microgroove-fibronectin complex titanium surface can up-regulate various genes involved in cell behavior.