• 제목/요약/키워드: MEA활동

검색결과 5건 처리시간 0.189초

Model Eliciting Activity(MEA)를 통한 초등 과학영재들의 문제해결 특성 분석 (An Analysis of the Characteristics of Elementary Science Gifted Students' Problem Solving through Model Eliciting Activity(MEA))

  • 윤진아;한금주;남윤경
    • 대한지구과학교육학회지
    • /
    • 제12권1호
    • /
    • pp.64-81
    • /
    • 2019
  • 본 연구는 MEA(Model Eliciting Activity)활동에서 나타나는 초등과학영재들의 문제해결 과정에서 나타나는 사고특성을 분석하는데 목적을 두었다. 이를 위해 광역시 소재 P대학부설 과학영재교육원 입학 선발과정에서 1차 창의적 문제해결력 검사를 통과한 40명의 초등과학영재를 대상으로 MEA활동을 실시하고 활동지를 분석하였다. 수행된 MEA활동은 'Coffee cup challenge'로 컵 도면을 활용하며 주어진 크기의 종이에 컵 옆면과 바닥을 가장 많이 배치하는 최적의 방법을 고안하는 활동으로 구성되어있다. 학생들이 문제해결과정에서 그린 3가지의 그림과 그 그림에 대한 설명이 주요 데이터로 수집되었으며, 통계적(상관분석)과 질적 분석을 통해 1)직관적 사고와 시각적 표현 그리고 2) 분석적 사고와 의사소통능력간의 관계를 분석하였다. 연구의 결과 1) 직관적 통찰은 시각적 표현능력과 전체 문제해결과정에서 중요한 역할을 하는 것으로 나타났다, 2) 분석적 사고와 정교화 과정이 의사소통능력에 큰 영향을 주는 것으로 해석되었다. 따라서 본 연구는 MEA활동이 스스로 아이디어를 구성하고, 다양한 해결방법을 찾아갈 수 있는 학습기회를 제공함으로써 초등과학영재들에게 반성과 사고를 촉진하고 학문적 연결과 의사소통능력을 길러주는 유용한 활동임을 고찰하였다.

주성분분석을 이용한 토끼 망막 신경절세포의 활동전위 파형 분류 (PCA­based Waveform Classification of Rabbit Retinal Ganglion Cell Activity)

  • 진계환;조현숙;이태수;구용숙
    • 한국의학물리학회지:의학물리
    • /
    • 제14권4호
    • /
    • pp.211-217
    • /
    • 2003
  • 주성분분석은 잘 알려진 데이터 분석 방법으로써 높은 차원의 데이터를 낮은 차원의 데이터로 표현하는데 효과적이어서 얼굴인식, 데이터 압축 등에 이용되고 있다. 주성분분석을 하게 되면 원 데이터의 공분산 행렬로부터 정규직교한 고유벡터와 해당하는 고유치를 얻게 되고 그 중 큰 값을 가지는 고유벡터 들을 선택하여 선형 변환함으로써 데이터의 차원을 줄일 수 있게 된다. 망막에 빛 자극이 인가되면 시세포 층에서 전기신호로 변환된 후 복잡한 신경회로를 거쳐 최종적으로 신경절세포 층에서 활동전위의 형태로 출력되게 된다. 본 연구에서는 다채널전극을 사용하여 여러 개 망막 신경절세포로부터 유래되는 활동전위를 기록한 후 개개의 신호를 구분하는 과정을 거치고, 이어서 그 신호를 만들어 내는 각 뉴론들끼리의 시간적, 공간적 흥분발사 패턴을 이해함으로써 궁극적으로 시각정보 인코딩 기전을 밝히려는 연구 목표하에 그 첫 단계로서 망막 신경절세포의 활동전위를 기록한 후 분류하는 과정을 성공적으로 수행하였기에 그 내용을 서술하고자 한다. 망막에서 기록되는 신경절세포 활동전위는 불규칙하고 확률적이기 때문에 주성분분석을 통하여 그 유형을 분류할 수 있었다. 토끼 눈으로부터 망막을 박리하여 망막조각을 얻은 후 신경절세포 층이 전극표면을 향하도록 전극에 부착하였다. 8${\times}$8의 microelectrode array (MEA)를 전극으로 사용하였고, 증폭기는 MEA 60 system을 사용하여 신경절세포 활동전위를 기록하였다. 활동전위 기록 후 파형 분류를 하였다. 잡음이 섞여있는 기록으로부터 신호를 검출하기 위하여, 잡음역치($\pm$3$\sigma$)를 설정하였다. 역치를 넘는 파형 만을 획득한 후 주성분분석을 통해 각 파형의 첫 번째 주성분, 두 번째 주성분을 계산하여 2차원 평면에 투사함으로써 몇 개의 의미있는 클러스터를 얻었다. 이 클러스터는 곧 각 신경절세포에서 유래되는 파형을 반영하므로 주성분분석을 통하여 망막 신경절세포의 활동전위를 각 세포별로 분류할 수 있음을 확인하였다.

  • PDF

발명기법(TRIZ)을 적용한 MEA(Model-Eliciting Activities) 프로그램 개발 및 적용 -학생들의 개념 변화를 중심으로- (Development and Application of MEA(Model-Eliciting Activities) Program Applying the Invention Technique(TRIZ): Focus on Students' Conceptual Change)

  • 강은주
    • 한국과학교육학회지
    • /
    • 제42권1호
    • /
    • pp.161-176
    • /
    • 2022
  • 본 연구는 발명기법을 적용한 MEA 프로그램을 개발하고 이를 적용하여 학생들의 개념 변화를 분석하였다. 발명기법(TRIZ)을 적용한 MEA 활동은 6학년 교과서에 제시된 '전기의 이용' 단원의 종이 전기회로 만들기 주제를 대상으로 구성하였다. 문제 해결을 위한 아이디어 구체화의 방안으로 TRIZ 기법 중 분할, 통합, 다용도, 포개기, 빼기, 반대로 기법을 추출하여 적용하였다. 개발된 프로그램은 발명기법 알아보기(1차시), 문제 상황 확인 및 문제 해결하기(2, 3차시), 문제 해결 과정 표현하기(4차시)로 구성되어 있다. 초등학교 6학생 학생을 대상으로 적용한 결과, 일반수업에 참여한 비교집단에 비해 발명기법을 적용한 MEA 수업에 참여한 실험집단의 과학적 개념이 향상되었음을 확인하였다. 과학적 개념의 향상지수를 산출한 결과, 비교집단은 0.15의 낮은 교육 효과, 실험집단은 0.69의 중간 교육 효과를 보였다. 본 연구는 과학 교과에서 발명교육을 접목할 수 있는 구체적인 방안을 제시하고 있다는 점에서 의의가 있다.

다채널전극으로 기록한 토끼 망막신경절세포의 활동전위 파형 구분 (Waveform Sorting of Rabbit Retinal Ganglion Cell Activity Recorded with Multielectrode Array)

  • 진계환;이태수;구용숙
    • 한국의학물리학회지:의학물리
    • /
    • 제16권3호
    • /
    • pp.148-154
    • /
    • 2005
  • 망막에서 나오는 활동전위와 같이 복잡한 신경망을 거쳐 처리되는 전기신호를 분석하기 위해서는 기존의 단일 전극 기록법으로는 어렵다. 단일 전극을 통한 활동전위의 기록은 개개의 신경세포 특성을 알아내는 데에는 유용한 방법이나 신경세포 간의 시간적, 공간적인 관계는 알아낼 수 없다는 한계를 가지고 있으므로 이같은 한계를 극복하기 위하여 다채널 전극을 이용한 신경신호 기록방법이 최근에 개발되어 널리 이용되고 있다. 다채널전극 기록 방식인 MEA60 시스템은 세포 밖에 위치한 60개의 전극이 생체신호를 동시에 기록한다. 세포 fi에 위치한 각각의 전극이 포착한 신경 신호는 하나의 망막신경절세포 반응이라기보다는 여러 세포의 반응이 동시에 기록될 가능성이 높다. 그러므로 여러 세포의 반응이 함께 기록된 신호로부터 각각의 세포로부터 나오는 파형을 구분하는 작업이 반드시 필요하다. 본 연구에서는 다채널 전극으로 기록한 망막 신경절세포 신호로부터 MATLAB을 이용하여 활동전위 파형을 검출하고 분류하는 과정을 구현하여 보았다. 이러한 분류과정은 추후 진행되는 신호분석방법인 자극 후 시간 히스토그램(poststimulus time histogram, PSTH), 자기상관관계(autocorrelogram), 상호상관관계(cross-correlogram)를 보기 위하여 반드시 거쳐야 하는 전처리(preprocess) 과정이다. 본 연구에서는 MATLAB을 이용한 파형 구분 프로토콜을 확립하였을 뿐만 아니라 이러한 프로토콜이 신경절 세포의 활동전위 파형을 검출하는 데 유용한 방법임을 입증하였다

  • PDF

Matlab을 이용한 망막신경절세포 감수야 구성 (Reconstruction of Receptive Field of Retinal Ganglion Cell Using Matlab)

  • 예장희;진계환;구용숙
    • 한국의학물리학회지:의학물리
    • /
    • 제17권4호
    • /
    • pp.260-267
    • /
    • 2006
  • 개개의 망막신경절세포는 자신이 담당하고 있는 망막의 특정부위에 빛자극이 가해지면 그 빛자극의 특징을 활동전위의 형태로 인코딩하게 된다. 이때 개개의 망막신경절세포가 담당하고 있는 망막의 특정부위를 감수야(receptive field)라 부른다. 그러므로 망막신경절세포의 전기적 특성을 파악하기 위해서는 감수야의 위치를 규정하는 작업이 반드시 필요하다. 그 이유는 감수야의 배열 상태를 알게 되면 신경절세포가 어떻게 시각자극을 인코딩하는지 그 메커니즘에 관한 통찰이 가능하기 때문이다. 본 논문에서는 무작위 바둑판 자극을 MEA의 개개 채널에 독립적으로 인가함과 동시에 여러 망막신경절세포의 흥분파를 기록하였다. 이후 오프라인에서 망막신경절세포의 파형을 추출하고 ON-cell, OFF-cell, ON/OFF-cell로 분류한 후 개개의 망막신경절세포의 감수야를 WATLAB을 이용하여 구현하여 보았다. 이런 방식으로 재구성된 ON-cell과 OFF-cell의 감수야의 예를 제시한다.

  • PDF