• 제목/요약/키워드: ME transducer

검색결과 9건 처리시간 0.025초

A High-sensitivity Passive Magnetic Transducer Based on PZT Plates and a Fe-Ni Fork Substrate

  • Li, Ping;Wen, Yumei;Jia, Chaobo;Li, Xinshen
    • Journal of Magnetics
    • /
    • 제16권3호
    • /
    • pp.271-275
    • /
    • 2011
  • This paper proposes a magnetoelectric (ME) composite transducer structure consisting of a magnetostrictive H-type Fe-Ni fork substrate and piezoelectric PZT plates. The fork composite structure has a higher ME voltage coefficient compared to other ME composite structures due to the higher quality (Q) factor. The ME sensitivity of the fork structure reaches 12 V/Oe (i.e., 150 V/cm Oe). The fork composite with two PZT plates electrically connected in series exhibits over 5 times higher ME voltage coefficient than the output of the rectangle structure in the same size. The experiment shows the composite of a Fe-Ni fork substrate and PZT plates has a significantly enhanced ME voltage coefficient and a higher ME sensitivity relative to the prior sandwiched composite laminates. By the use of a lock-in amplifier with 10 nV resolution, this transducer can detect a weak magnetic field of less than $10^{-12}$ T. This transducer can also be designed for a magnetoelectric energy harvester due to its passive high-efficiency ME energy conversion.

The Dumb-bell Shaped Magnetostrictive/Piezoelectric Transducer

  • Li, Jianzhong;Wen, Yumei;Li, Ping
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.461-465
    • /
    • 2011
  • Traditional magnetostrictive/piezoelectric laminate composites are generally in the regular geometries such as rectangles or disks. To explore properties of the irregular geometry magnetostrictive/piezoelectric transducer in the fundamental resonant frequency, a step dumb-bell shaped Magnetoelectric (ME) transducer is presented in this study. Both analytical and experimental investigations are carried out for the dumb-bell shaped transducer in the fundamental frequency. Comparing with the traditional rectangular transducer, the theory shows the resonant frequency of dumb-bell shaped transducer is reduced 31%, and the experiment gives the result of that is 37% which is independent of dc magnetic fields. The ratio of magnetoelectric voltage coefficient (MEVC) between the dumb-bell shaped and rectangular shaped transducers in theory is 66% comparing with that of in experiment is varying from 140% to 33% when the dc field is increased from 0 Oe to 118 Oe.

Rosen형 압전 변압기 구조를 적용한 자기-전기 복합체의 특성 (Characteristics of Magnetoelectric Composite with Rosen Type Piezoelectric Transducer Structure)

  • 박성훈;윤운하;;류정호
    • 한국전기전자재료학회논문지
    • /
    • 제34권6호
    • /
    • pp.480-486
    • /
    • 2021
  • Magnetoelectric (ME) composite is composed of a piezoelectric material and a magnetostrictive material. Among various ME structures, 2-2 type layered ME composites are anticipated to be used as high-sensitivity magnetic field sensors and energy harvesting devices especially operating at its resonance modes. Rosen type piezoelectric transducer using piezoelectric material is known to amplify a small electrical input voltage to a large electrical output voltage. The output voltage of these Rosen type piezoelectric transducers can be further enhanced by modifying them into ME composite structures. Herein, we fabricated Rosen type ME composites by sandwiching Rosen type PMN-PZT single crystal between two Ni layers and studied their ME coupling. However, the voltage step-up ratio at the resonance frequency was found to be smaller than the value calculated with αME value. The ATILA FEA (Finite Elements Analysis) simulation results showed that the position of the nodal point was changed with the presence of a magnetostrictive layer. Thus, while designing a Rosen type ME composite with high performance in a resonant driving situation, it is necessary to optimize the position of the nodal point by optimizing the thickness or length of the magnetostrictive layer.

A New Vibration Energy Harvester Using Magnetoelectric Transducer

  • Yang, Jin;Wen, Yumei;Li, Ping;Dai, Xianzhi;Li, Ming
    • Journal of Magnetics
    • /
    • 제16권2호
    • /
    • pp.150-156
    • /
    • 2011
  • Magnetoelectric (ME) transducers were originally intended for magnetic field sensors but have recently been used in vibration energy harvesting. In this paper, a new broadband vibration energy harvester has been designed and fabricated to be efficiently applicable over a range of source frequencies, which consists of two cantilever beams, two magnetoelectric (ME) transducers and a magnetic circuit. The effects of the structure parameters, such as the non-linear magnetic forces of the ME transducers and the magnetic field distribution of the magnetic circuit, are analyzed for achieving the optimal vibration energy harvesting performances. A prototype is fabricated and tested, and the experimental results on the performances show that the harvester has bandwidths of 5.6 Hz, and a maximum power of 0.25 mW under an acceleration of 0.2 g (with g = $9.8\;ms^2$).

Polymeric Precursor법에 의한 LaMeO3 (Me = Cr, Co)의 제조 및 NOx 가스 검지 특성 (Fabrication and NOx Gas Sensing Properties of LaMeO3 (Me = Cr, Co) by Polymeric Precursor Method)

  • 이영성;;송정환
    • 한국재료학회지
    • /
    • 제21권8호
    • /
    • pp.468-475
    • /
    • 2011
  • [ $LaMeO_3$ ](Me = Cr, Co) powders were prepared using the polymeric precursor method. The effects of the chelating agent and the polymeric additive on the synthesis of the $LaMeO_3$ perovskite were studied. The samples were synthesized using ethylene glycol (EG) as the solvent, acetyl acetone (AcAc) as the chelating agent, and polyvinylpyrrolidone (PVP) as the polymer additive. The thermal decomposition behavior of the precursor powder was characterized using a thermal analysis (TG-DTA). The crystallization and particle sizes of the $LaMeO_3$ powders were investigated via powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and particle size analyzer, respectively. The as-prepared precursor primarily has $LaMeO_3$ at the optimum condition, i.e. for a molar ratio of both metal-source (a : a) : EG (80a : 80a) : AcAc (8a) inclusive of 1 wt% PVP. When the as-prepared precursor was calcined at $700^{\circ}C$, only a single phase was observed to correspond with the orthorhombic structure of $LaCrO_3$ and the rhombohedral structure of $LaCoO_3$. A solid-electrolyte impedance-metric sensor device composed of $Li_{1.5}Al_{0.5}Ti_{1.5}(PO_4)_3$ as a transducer and $LaMeO_3$ as a receptor has been systematically investigated for the detection of NOx in the range of 20 to 250 ppm at $400^{\circ}C$. The sensor responses were able to divide the component between resistance and capacitance. The impedance-metric sensor for the NO showed higher sensitivity compared with $NO_2$. The responses of the impedance-metric sensor device showed dependence on each value of the NOx concentration.

Dynamic Magnetostriction Characteristics of an Fe-Based Nanocrystalline FeCuNbSiB Alloy

  • Chen, Lei;Li, Ping;Wen, Yumei
    • Journal of Magnetics
    • /
    • 제16권3호
    • /
    • pp.211-215
    • /
    • 2011
  • The dynamic magnetostriction characteristics of an Fe-based nanocrystalline FeCuNbSiB alloy are investigated as a function of the dc bias magnetic field. The experimental results show that the piezomagnetic coefficient of FeCuNbSiB is about 2.1 times higher than that of Terfenol-D at the low dc magnetic bias $H_{dc}$ = 46 Oe. Moreover, FeCuNbSiB has a large resonant dynamic strain coefficient at quite low Hdc due to a high mechanical quality factor, which is 3-5 times greater than that of Terfenol-D at the same low $H_{dc}$. Based on such magnetostriction characteristics, we fabricate a new type of transducer with FeCuNbSiB/PZT-8/FeCuNbSiB. Its maximum resonant magnetoelectric voltage coefficient achieves ~10 V/Oe. The ME output power reaches 331.8 ${\mu}W$ at an optimum load resistance of 7 $k{\Omega}$ under 0.4 Oe ac magnetic field, which is 50 times higher than that of the previous ultrasonic-horn-substrate composite transducer and it decreases the size by nearly 86%. The performance indicate that the FeCuNbSiB/PZT-8/FeCuNbSiB transducer is promising for application in highly efficient magnetoelectric energy conversion.

Wideband and 2D vibration energy harvester using multiple magnetoelectric transducers

  • Yang, Jin;Yu, Qiangmo;Zhao, Jiangxin;Zhao, Nian;Wen, Yumei;Li, Ping
    • Smart Structures and Systems
    • /
    • 제16권4호
    • /
    • pp.579-591
    • /
    • 2015
  • This paper investigates a magnetoelectric (ME) vibration energy harvester that can scavenge energy in arbitrary directions in a plane as well as wide working bandwidth. In this harvester, a circular cross-section cantilever rod is adopted to extract the external vibration energy due to the capability of it's free end oscillating in arbitrary in-plane directions. And permanent magnets are fixed to the free end of the cantilever rod, causing it to experience a non-linear force as it moves with respect to stationary ME transducers and magnets. The magnetically coupled cantilever rod exhibits a nonlinear and two-mode motion, and responds to vibration over a much broader frequency range than a standard cantilever. The effects of the magnetic field distribution and the magnetic force on the harvester's voltage response are investigated with the aim to obtain the optimal vibration energy harvesting performances. A prototype harvester was fabricated and experimentally tested, and the experimental results verified that the harvester can extract energy from arbitrary in-plane directions, and had maximum bandwidth of 5.5 Hz, and output power of 0.13 mW at an acceleration of 0.6 g (with $g=9.8ms^{-2}$).

광자선 조사에 따른 변환기재료의 유전특성 (Dielectric characteristics of the transducer materials due to irradiation of photon beam)

  • 고길영;김탁용;백금문;조경순;이충호;이수원;홍진웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.316-318
    • /
    • 2003
  • 본 연구에서는 전기적 특성, 기계적 특성, 내수성 및 내유성이 우수한 고분자 화합물로 산업용, 콘덴서절연재료용, 의료센서용 등 각종 절연재료 및 유전재료로 활용되어 지고 있는 변환기용 PET박막에 광자선을 10[Gy] 15[MeV], 30[Gy] 15[MeV], 50[Gy] 15[MeV]를 조사하여 물성분석 및 전기적 특성중 유전정접 특성에 관하여 검토하였다. 물성분석으로 X-선 회절(XRD) 분석 결과 조사량에 따라 피크의 크기가 커지므로 결정성이 더욱 좁아짐을 알수 있었으며 적외선 분광(FTIR) 측정결과로 파수 1752[$cm^{-1}$]에서는 C=O기의 신축운동 기여로 피크가 나타나며 파수 1266[$cm^{-1}$]에서 =C-O기의 신축운동기여와 그리고 1019[$cm^{-1}$]에서는 벤젠환의 진동기여로 흡수 피크가 나타남을 알 수 있었고, 전자현미경을 이용하여 800배로 확대한 시료의 파단면을 조사한 결과 결정질과 비정질 영역이 혼재하고 있는 것을 확인하였다. 유전정접 특성으로는 측정온도범위 상온에서 130[$^{\circ}C$]와 인가전압 범위 1[V]에서 20[V]를 변화시켜 각각의 조사량에 대한 PET 박막의 유전특성의 온도의존성 및 주파수 의존성에 대하여 실험한 결과 변환기 재료의 가능성을 조사하였다.

  • PDF

초음파 Pulse-echo 방법에 의한 액체막 두께 측정 (Liquid Film Thickness Measurement by An Ultrasonic Pulse Echo Method)

  • Jong Ryul Park;Jong-Ryul Park;Se Kyung Lee
    • Nuclear Engineering and Technology
    • /
    • 제17권1호
    • /
    • pp.25-33
    • /
    • 1985
  • 경수형 원자로의 운전과 안전성 해석을 위해 열수력학적 모형을 개발하는 것이 하나의 중요한 과제이다. 특히, 2상류의 열수력학적 모형을 개발하기 위해서는 기포율, 액체막 두께, 유동 영역과 같은 중요한 변수들을 실제로 측정한 값이 필요하다. 본 연구의 목적은 초음파 Pulse-echo 방법을 이용하여 액체 두께를 실험적으로 측정하고, 이론치와 비교 분석하여 (1) 관벽의 두께, (2) 초음파의 주파수, (3) 관벽의 재질 등이 액체막 두께 측정에 미치는 영향을 분석하는 데에 있다. 평판협 (Plate-type)과 관(Tube-type)으로 된 시험관을 이용하여 수평으로 놓인 물-공기의 층류계 (a horizontal airwater stratified system)를 만들어 일련의 액체막 두께 측정 실험을 수행하였다. 시험관의 벽 두께와 초음파 Pulse-echo 의 주파수를 변화시키면서 액체막 두께 측정을 반복하였다. 또한, 관벽의 acoustic impedance가 초음파 Pulse-echo 방법으로 액체막 두께를 측정할 때, 어떠한 영향을 주는가도 아울러 파악하기 위해서 스텐레스 강과 폴리아크릴 (Polyacrylate) 등 재질이 다른 두 개의 격리봉 (Standonff rod) 을 사용하여 액체막 두께를 측정하였다. 이렇게 하여 얻은 실험 결과를 제시하고 실제로 측정한 액체막 두께와 비교 분석하였다.

  • PDF