• Title/Summary/Keyword: MDS-code

Search Result 17, Processing Time 0.02 seconds

MDS code Confirmation Algorithms of Linear Transformation Matrix in Block Cipher Algorithms (블록 암호 알고리즘에서 선형변환 행렬식의 MDS 코드 생성 확인 알고리즘)

  • 윤성훈;박창수;조경연
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.216-219
    • /
    • 2002
  • 정보통신의 발달과 인터넷의 확산으로 인해 정보보안의 필요성이 중요한 문제로 대두되면서 여러 종류의 암호 알고리즘이 개발되어 활용되고 있다. Substitution Permutation Networks(SPN)등의 블록 암호 알고리즘에서는 확산선형변환 행렬을 사용하여 안전성을 높이고 있다. 확산선형변환 행렬이 Maximum Distance Separable(MDS) 코드를 생성하면 선형 공격과 차분 공격에 강한 특성을 보인다. 본 논문에서는 선형변환 행렬이 MDS 코드를 생성하는 가를 판단하는 새로운 알고리즘을 제안한다. 입력 코드는 GF(2/sub□/)상의 원소들로 구성되며, 원소를 변수로 해석하여, 변수를 소거시키면서 선형변환행렬이 MDS 코드를 생성하는 가를 판단한다. 본 논문에서 제안한 알고리즘은 종래의 모든 정방 부분행렬이 정칙인가를 판단하는 알고리즘과 비교하여 연산 수행 시간을 크게 줄였다.

  • PDF

Practical Schemes for Tunable Secure Network Coding

  • Liu, Guangjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1193-1209
    • /
    • 2015
  • Network coding is promising to maximize network throughput and improve the resilience to random network failures in various networking systems. In this paper, the problem of providing efficient confidentiality for practical network coding system against a global eavesdropper (with full eavesdropping capabilities to the network) is considered. By exploiting a novel combination between the construction technique of systematic Maximum Distance Separable (MDS) erasure coding and traditional cryptographic approach, two efficient schemes are proposed that can achieve the maximum possible rate and minimum encryption overhead respectively on top of any communication network or underlying linear network code. Every generation is first subjected to an encoding by a particular matrix generated by two (or three) Vandermonde matrices, and then parts of coded vectors (or secret symbols) are encrypted before transmitting. The proposed schemes are characterized by tunable and measurable degrees of security and also shown to be of low overhead in computation and bandwidth.

ON A CLASS OF CONSTACYCLIC CODES OF LENGTH 2ps OVER $\frac{\mathbb{F}_{p^m}[u]}{{\langle}u^a{\rangle}}$

  • Dinh, Hai Q.;Nguyen, Bac Trong;Sriboonchitta, Songsak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1189-1208
    • /
    • 2018
  • The aim of this paper is to study the class of ${\Lambda}$-constacyclic codes of length $2p^s$ over the finite commutative chain ring ${\mathcal{R}}_a=\frac{{\mathbb{F}_{p^m}}[u]}{{\langle}u^a{\rangle}}={\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}+{\cdots}+u^{a-1}{\mathbb{F}}_{p^m}$, for all units ${\Lambda}$ of ${\mathcal{R}}_a$ that have the form ${\Lambda}={\Lambda}_0+u{\Lambda}_1+{\cdots}+u^{a-1}{\Lambda}_{a-1}$, where ${\Lambda}_0,{\Lambda}_1,{\cdots},{\Lambda}_{a-1}{\in}{\mathbb{F}}_{p^m}$, ${\Lambda}_0{\neq}0$, ${\Lambda}_1{\neq}0$. The algebraic structure of all ${\Lambda}$-constacyclic codes of length $2p^s$ over ${\mathcal{R}}_a$ and their duals are established. As an application, this structure is used to determine the Rosenbloom-Tsfasman (RT) distance and weight distributions of all such codes. Among such constacyclic codes, the unique MDS code with respect to the RT distance is obtained.

Practical and Verifiable C++ Dynamic Cast for Hard Real-Time Systems

  • Dechev, Damian;Mahapatra, Rabi;Stroustrup, Bjarne
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.4
    • /
    • pp.375-393
    • /
    • 2008
  • The dynamic cast operation allows flexibility in the design and use of data management facilities in object-oriented programs. Dynamic cast has an important role in the implementation of the Data Management Services (DMS) of the Mission Data System Project (MDS), the Jet Propulsion Laboratory's experimental work for providing a state-based and goal-oriented unified architecture for testing and development of mission software. DMS is responsible for the storage and transport of control and scientific data in a remote autonomous spacecraft. Like similar operators in other languages, the C++ dynamic cast operator does not provide the timing guarantees needed for hard real-time embedded systems. In a recent study, Gibbs and Stroustrup (G&S) devised a dynamic cast implementation strategy that guarantees fast constant-time performance. This paper presents the definition and application of a cosimulation framework to formally verify and evaluate the G&S fast dynamic casting scheme and its applicability in the Mission Data System DMS application. We describe the systematic process of model-based simulation and analysis that has led to performance improvement of the G&S algorithm's heuristics by about a factor of 2. In this work we introduce and apply a library for extracting semantic information from C++ source code that helps us deliver a practical and verifiable implementation of the fast dynamic casting algorithm.

A study on the constitution of S box and G function in SEED-type cipher (SEED 형식 암호에서 S 박스와 G 함수 구성에 관한 연구)

  • 송홍복;조경연
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4A
    • /
    • pp.291-300
    • /
    • 2002
  • In this paper, a way of constituting optimized S box and G function was suggested in the block cipher whose structure is similar to SEED, which is KOREA standard of 128-bit block cipher. S box can be formed with nonlinear function and an affine transform. Nonlinear function must be strong with differential attack and linear attack, and it consists of an inverse number over GF(2$\^$8/) which has neither a fixed point, whose input and output are the same except 0 and 1, nor an opposite flexed number, whose output is one's complement of the input. Affine transform can be constituted so that the input/output correlation can be the lowest and there can be no fixed point or opposite fixed point. G function undergoes diffusive linear transform with 4 S-box outputs using the matrix of 4$\times$4 over GF(2$\^$8/). G function can be constituted so that MDS(Maximum Distance Separable) code can be formed, SAC(Strict Avalanche Criterion) can be met, there can be no weak input, where a fried point, an opposite fried point, and output can be two's complement of input, and the construction of hardware can be made easy. The S box and G function suggested in this paper can be used as a constituent of the block cipher with high security, in that they are strong with differential attack and linear attack with no weak input and they are excellent at diffusion.

Experimental Design of S box and G function strong with attacks in SEED-type cipher (SEED 형식 암호에서 공격에 강한 S 박스와 G 함수의 실험적 설계)

  • 박창수;송홍복;조경연
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.123-136
    • /
    • 2004
  • In this paper, complexity and regularity of polynomial multiplication over $GF({2^n})$ are defined by using Hamming weight of rows and columns of the matrix ever GF(2) which represents polynomial multiplication. It is shown experimentally that in order to construct the block cipher robust against differential cryptanalysis, polynomial multiplication of substitution layer and the permutation layer should have high complexity and high regularity. With result of the experiment, a way of constituting S box and G function is suggested in the block cipher whose structure is similar to SEED, which is KOREA standard of 128-bit block cipher. S box can be formed with a nonlinear function and an affine transform. Nonlinear function must be strong with differential attack and linear attack, and it consists of an inverse number over $GF({2^8})$ which has neither a fixed pout, whose input and output are the same except 0 and 1, nor an opposite fixed number, whose output is one`s complement of the input. Affine transform can be constituted so that the input/output correlation can be the lowest and there can be no fixed point or opposite fixed point. G function undergoes linear transform with 4 S-box outputs using the matrix of 4${\times}$4 over $GF({2^8})$. The components in the matrix of linear transformation have high complexity and high regularity. Furthermore, G function can be constituted so that MDS(Maximum Distance Separable) code can be formed, SAC(Strict Avalanche Criterion) can be met, and there can be no weak input where a fixed point an opposite fixed point, and output can be two`s complement of input. The primitive polynomials of nonlinear function affine transform and linear transformation are different each other. The S box and G function suggested in this paper can be used as a constituent of the block cipher with high security, in that they are strong with differential attack and linear attack with no weak input and they are excellent at diffusion.