• Title/Summary/Keyword: MDPDE

Search Result 6, Processing Time 0.018 seconds

A study on tuning parameter selection for MDPDE (MDPDE의 조율모수 선택에 관한 연구)

  • Yu, Donghyeon;Kim, Byungsoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.549-559
    • /
    • 2015
  • The MDPDE is an attractive alternative to maximum likelihood estimator because of the strong robustness properties that it inherently possess. The characteristics of MDPDE can be varied with the tuning parameter, in general, there is a trade-off between robustness and asymptotic efficiency. Hence, selection of optimal tuning parameter is important but complicated task. In this study, we introduce two optimal tuning parameter selection methods proposed by Fujisawa and Eguchi (2005) and Warwick (2006). Through simulation study, we found out that Warwick's method yields excessively small optimal tuning parameter in certain cases while Fujisawa and Eguchi's method performs well. Therefore, we think Fujisawa and Eguchi's method can be used commonly for finding optimal tuning parameter of MDPDE.

Minimum Density Power Divergence Estimator for Diffusion Parameter in Discretely Observed Diffusion Processes

  • Song, Jun-Mo;Lee, Sang-Yeol;Na, Ok-Young;Kim, Hyo-Jung
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.267-280
    • /
    • 2007
  • In this paper, we consider the robust estimation for diffusion processes when the sample is observed discretely. As a robust estimator, we consider the minimizing density power divergence estimator (MDPDE) proposed by Basu et al. (1998). It is shown that the MDPDE for diffusion process is weakly consistent. A simulation study demonstrates the robustness of the MDPDE.

Minimum Hellinger Distance Estimation and Minimum Density Power Divergence Estimation in Estimating Mixture Proportions

  • Pak, Ro-Jin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1159-1165
    • /
    • 2005
  • Basu et al. (1998) proposed a new density-based estimator, called the minimum density power divergence estimator (MDPDE), which avoid the use of nonparametric density estimation and associated complication such as bandwidth selection. Woodward et al. (1995) examined the minimum Hellinger distance estimator (MHDE), proposed by Beran (1977), in the case of estimation of the mixture proportion in the mixture of two normals. In this article, we introduce the MDPDE for a mixture proportion, and show that both the MDPDE and the MHDE have the same asymptotic distribution at a model. Simulation study identifies some cases where the MHDE is consistently better than the MDPDE in terms of bias.

  • PDF

The Minimum Squared Distance Estimator and the Minimum Density Power Divergence Estimator

  • Pak, Ro-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.6
    • /
    • pp.989-995
    • /
    • 2009
  • Basu et al. (1998) proposed the minimum divergence estimating method which is free from using the painful kernel density estimator. Their proposed class of density power divergences is indexed by a single parameter $\alpha$ which controls the trade-off between robustness and efficiency. In this article, (1) we introduce a new large class the minimum squared distance which includes from the minimum Hellinger distance to the minimum $L_2$ distance. We also show that under certain conditions both the minimum density power divergence estimator(MDPDE) and the minimum squared distance estimator(MSDE) are asymptotically equivalent and (2) in finite samples the MDPDE performs better than the MSDE in general but there are some cases where the MSDE performs better than the MDPDE when estimating a location parameter or a proportion of mixed distributions.

이상치를 감안한 확률강우분포의 매개변수 추정방법의 적용성 검토

  • Kwon, You Jeong;Seo, Yongwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.319-319
    • /
    • 2018
  • 최근 전 세계적으로 극한수문사상의 증가로 인한 피해의 규모와 빈도가 잦아지고 있다. 기후변화에 관한 정부 간 협의체(IPCC)5차 보고서에 따르면 우리나라는 모든 시나리오 하에서 평균 강수량이 증가하는 지역으로 분류되었다. 특히 강우와 태풍피해가 잦은 7월에서 9월의 강우량이 급격히 증가하는 것으로 나타나며 이는 현재보다 극한수문사상이 더욱 빈번하게 일어날 것이라 예상할 수 있다. 하지만 기존의 매개변수 추정방법은 이상치 산정기준을 넘어서는 극치를 제외하고 확률강우량을 산정하고 있는 실정이다. 따라서 본 연구에서는 이러한 기존의 매개변수 추정방법 보다 극한값에 강건한 MDPDE(minimum density power divergence estimator)를 이용한 매개변수 추정을 사용하여 우리나라 60개 강우관측소의 과거 강우관측자료에 대한 최적조율모수에 대한 빈도별 확률강우량을 추정하여 기존의 방법으로 산정한 확률강우량과 비교하였다. 이상치로 분류할 수 있는 극한수문사상이 발생한 우리나라 31개소에 대하여 MDPDE의 적용성을 검토한 결과 기존의 매개변수 추정방법에 비해 이상치를 포함한 100년 빈도 확률강우량이 약13.3% 감소하는 것으로 나타났다.

  • PDF

A Robust Estimation for the Composite Lognormal-Pareto Model

  • Pak, Ro Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.4
    • /
    • pp.311-319
    • /
    • 2013
  • Cooray and Ananda (2005) proposed a composite lognormal-Pareto model to analyze loss payment data in the actuarial and insurance industries. Their model is based on a lognormal density up to an unknown threshold value and a two-parameter Pareto density. In this paper, we implement the minimum density power divergence estimation for the composite lognormal-Pareto density. We compare the performances of the minimum density power divergence estimator (MDPDE) and the maximum likelihood estimator (MLE) by simulations and an example. The minimum density power divergence estimator performs reasonably well against various violations in the distribution. The minimum density power divergence estimator better fits small observations and better resists against extraordinary large observations than the maximum likelihood estimator.