• Title/Summary/Keyword: MDI-polyurethane

Search Result 89, Processing Time 0.022 seconds

Synthesis of Polyurethane Foam with Soybean Oil (콩기름을 이용한 폴리우레탄 포옴의 합성)

  • Yang, Do Hyeon;Lee, Kwang Young;Shin, Jae Sup
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.731-736
    • /
    • 1999
  • The polyol was synthesized from soybean oil. Soybean oil was epoxized with peracetic acid, and was reacted with methanol in a sulfuric acid catalyst. OH value of synthesized polyol was 186(mg KOH/g). The polyurethane foam was synthesized with silicon type B-8409 as a surfactant, distilled water as a blowing agent, dimethylcyclohexylamine as a catalyst, and polymeric MDI. The density, the compressive strength, the compressive modulus, and the cell structure of the synthesized foam were investigated. The foam was prepared with changing the mole ratio of MDI, and the amount of water, surfactant, and catalyst. As the MDI index was increased, the density and the compressive property of the foam were increased.

  • PDF

Effect of the Diisocyanate Type on the Hydrolysis Behavior of Polyurethane

  • Dong-Eun Kim;Seung-Ho Kang;Sang-Ho Lee
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.121-127
    • /
    • 2023
  • The effect of diisocyanate type on the decomposition temperature of polyurethane (PU) hydrolysis was investigated in a subcritical water medium up to 250℃. PU samples were prepared using different types of diisocyanate: two aromatic diisocyanates (4,4'-methylene diphenyl diisocyanate (MDI) and methyl phenylene diisocyanate (TDI)), one unbranched aliphatic diisocyanate (hexamethylene diisocyanate (HDI)), and two cyclic aliphatic diisocyanates (4,4'-methylene dicyclohexyl diisocyanate (H12MDI) and isophorone diisocyanate (IPDI)). The pressure had no effect on hydrolysis in the range of 70-250 bar. The decomposition temperature of the PU samples increased in the following order: TDI-PU (199℃) < H12MDI ≈ IPDI ≈ HDI (218-220℃) < MDI-PU (237℃). This order of increase in temperature is related to the electron-donating ability of the group to connected to the nitrogen of the urethane unit. When the temperature of the (PU + water) mixture reached the specific decomposition temperature, the PU samples hydrolyzed completely within 5 min into primary amine and 1,4-butanediol. The hydrolysis products from MDI-PU and H12MDI-PU were separated into a liquid phase rich in (BD + water) and a solid low phase rich in amine, whereas the products from TDI-, IPDI-, and HDI-PU existed in a single aqueous phase.

Thermal Stability of Phenylphosphonic Acid Modified Polyurethanes

  • Dong-Eun Kim;Seung-Ho Kang;Sang-Ho Lee
    • Elastomers and Composites
    • /
    • v.58 no.2
    • /
    • pp.70-80
    • /
    • 2023
  • The effect of phenylphosphonic acid (PPOA) on polyurethane (PU) thermal stability was studied through Fourier transform infrared spectroscopy and Thermogravimetric analysis. To synthesize PPOA-modified PUs (PPOA-PUs), polyether-type diols (Mw=62, 106, 190, 419, 605) were chemically modified with PPOA and then reacted with 4,4'-dicyclohexylmethane diisocyanate (H12MDI) and 4,4-diphenylmethane diisocyanate (MDI). During thermal decomposition in air, the PPOA embedded in the PUs formed intumescent phosphocarbonaceous char. Below 400℃, PPOA-H12MDI-PUs were more unstable, as PPOA decomposed at lower temperatures than phenyl groups and aliphatic ethers. Above 550℃, the thermal stability of PUs followed this order: PPOA-MDI-PUs > PPOA-H12MDI-PUs > MDI-PUs > H12MDI-PUs. At 700℃, unmodified PUs had no residue, while the PPOA-MDI-PU residue was 4.4~23.0 wt.% and the PPOA-H12MDI-PU residue was 1.5~17.5 wt.%. The enhanced thermal stability of PPOA-MDI-PUs at high temperatures can be attributed to the synergetic effect of PPOA and phenyl groups on the formation of phosphocarbonaceous char.

Preparation of Wood Adhesives from the Rice Powder and pMDIs; Characterizations of Their Properties

  • Lee, Sang-Min;Joo, Ji-Hye;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.607-615
    • /
    • 2015
  • To investigate the adhesion effect of various kinds and contents of polymeric methylene diphenyl diisocyanates (pMDIs) on adhesion performance, wood adhesives (A-1~5) were synthesized and characterized. As results, when the amount of pMDI increased in adhesives, the dry tensile strength was found to be proportionally increased sustaining at around $16.0{\sim}21.6kgf/cm^2$. The polyurethane (PU) resin, which used M11S as a source of pMDI showed the best wet tensile strength at $11.9kgf/cm^2$ and cyclic boil tensile strength at $8.1kgf/cm^2$, which satisfied the requirement of over $7kgf/cm^2$. Thermal properties of the rice powder (RP) based polyurethane resins were characterized by differential scanning calorimetry (DSC) and Thermal gravimetric analysis (TGA). Thermal stability of polyurethane resins increased to $250^{\circ}C$ with adding pMDIs. The more pMDI (M5S) was added to adhesive, the higher thermal stability of the resin was observed by TGA.

Effect of PPG, MDI, 2-HEMA and butyl acrylate content on the properties of polyurethane adhesive (폴리우레탄 접착제의 물성에 미치는 PPG, MDI, 2-HEMA 및 butyl acrylate량의 영향)

  • Park, Chan Young
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.245-252
    • /
    • 2014
  • FT-IR measurement and the physical properties of polyurethane adhesive prepared from the polyol, isocyanate, 2-HEMA and other acrylate monomers were examined. The softening point, viscosity, adhesion strength and mechanical properties of the PU adhesives were reviewed by Ring and Ball method, Brookfield viscometer and universal test machine, respectively. Results revealed that increment of both PPG amount and butyl acrylate content decreased softening point, adhesion strength, tensile strength and 100% modulus. However as 2-HEMA and MDI content increased the mechanical properties including tensile strength, 100% modulus increased, and also the viscosity and NCO content increased.

Recent Advances and Trends in Reactive Polyurethane Adhesives

  • Krebs, Michael
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.53-59
    • /
    • 2006
  • The paper highlights technical advances and introduces recent innovations such as smart curing laminating adhesives for flexible packaging with low migration rates of aromatic isocyanates and amines. Latent reactive one-part systems on the basis of surface deactivated solid isocyanates open up new dimensions for heat setting adhesives and waterborne PU dispersions. The new generation of Purmelt Micro Emission adhesives contains less than 0.1% of MDI monomer, thereby drastically reducing the emission of hazardous isocyanate vapors during processing and setting a significantly improved technical standard in occupational safety. Once again, polyurethane adhesives have demonstrated their unique ability to adapt to new process, product, safety and environmental requirements.

  • PDF

A Comparison of the Dielectric Behavior of Aromatic and Aliphatic Polyurethanes in Relation to Transitional Phenomena

  • Kim, Chy Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.211-216
    • /
    • 2017
  • The dielectric properties of two polyurethanes (PUs) with different hard segments, i.e., aromatic methylene di-p-phenyl diisocyanate (MDI) and aliphatic hexamethylene diisocyanate (HDI), were investigated in the temperature range of -100 to $100^{\circ}C$ and in the frequency range of 1 Hz to 3 kHz. The ${\alpha}$-relaxations induced by the glass transition of the equivalent soft segments in the two PUs occurred at relaxation times of ${\tau}=3.46{\times}10^{-3}s$ for MDI-PU and ${\tau}=3.39{\times}10^{-2}s$ for HDI-PU at $-20^{\circ}C$, in accord with the temperature-frequency superposition principle, resulting in similar shifting factors. However, different I-relaxations were observed for the two PUs. The I-relaxation of MDI-PU occurred due to the mobility of the chain extenders near $80^{\circ}C$ with a slower shifting rate than the ${\alpha}$-relaxation. On the other hand, I-relaxation arising from both the extender and the unconstrained hard segments of HDI-PU occurred at $70{\sim}100^{\circ}C$, indicating complicated dielectric behavior due to partial interaction with the ${\alpha}$-relaxation at high frequencies. Thus, the I-relaxation of HDI-PU did not follow the superposition principle. The dielectric behaviors of the PUs were mainly influenced by their phase transitions, which were affected by the structure and components of the materials.

Effect of Chemical Structure on the Properties of UV-cured Polyurethane Acrylates Films

  • Kwon, Ji-Yun;Yoo, Hye-Jin;Kim, Han-Do
    • Fibers and Polymers
    • /
    • v.2 no.3
    • /
    • pp.141-147
    • /
    • 2001
  • The effect of compositions of isophorone diisocyanate (IPDl)/4.4'-diphenylmethane diisocyalate (MDI) and polypropylene oxide diol (PPG, $M_w$: 3000)/1,4-butane diol (BD) on the properties of UV-cured polyurethane acrylate films based on 2-hydroxyethyl acrylate (HEA) was examined. UV-curable polyurethane acrylates were formulated from the prepolymer. trimethylol propane triacrylate (TMPTA) as a reactive diluent, and 1-hydroxycyclohexyl ketone (Irgacure 184) as a photoinitiator. Dynamic mechanical thermal properties and elastic properties of UV-cured polyurethane acrylates was fecund to depend on the chemical composition of IPDl/MDl and PPG/BD. As the BD content increased, the tensile storage modulus of all series samples increased significantly. The storage modulus increased in the order of samples A (IPDI based samples)> samples B (IPDI/MDl (7/3 molar ratio) based samples) > samples C (IPDI/MDl (5/5 molar ratio) based samples at the same composition. Two distinct louts modulus peaks for all samples are observed owing to the softs segment glass transition temperature ($T_gh$) and hard segment glass transition temperature ($T_gh$). The difference between $T_gh$, and $T_gh$, (Δ$T_g$) increases in the order of A > B > C at the same composition. In cycle test, the initial onset strain (%) was found to decrease with increasing BD content in PPG/BD and with increasing MDI content in IPDI/MDl.

  • PDF

Synthesis and Hydrolysis-Resistance Characterization of Waterborne Polyurethane (Waterborne Polyurethane의 합성 및 내가수분해 특성 연구)

  • Jeong, Booyoung;Cheon, Jungmi;Chun, Jaehwan
    • Journal of Adhesion and Interface
    • /
    • v.13 no.3
    • /
    • pp.116-120
    • /
    • 2012
  • In this study, waterborne polyurethane was prepared from polyester polyol, $H_{12}MDI$, DMPA and sulfopropylated polypropyleneglycol-${\alpha}$,${\omega}$-diamine (SP). The $T_g$ of waterborne polyurethane was increased as the SP content increased, while it was decreased at the NCO/OH ratio of 1.8. Also the hydrolysis-resistance and tensile strength were increased as the SP content increased. The tensile strength decrement of WPU-SP was 2~5% with the exception of WPU-SP-1.

Synthesis and Emulsification of Polyurethane Anionomer (음이온성 폴리우레탄의 합성 및 에멀젼화에 관한 연구)

  • Ann, Choun-Kee;Jin, Je-Yong;Lee, Gyung-Won;Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.34 no.5
    • /
    • pp.399-406
    • /
    • 1999
  • Polyurethane (PU) prepolymers were synthesized from polytetramethylene ether glycol (PTMG), 4,4'-diphenylmethane diisocyanate (MDI), toluene 2,4-diisocyanate (TDI) and isophoron diisocyanate (IPDI). After chain extention using dimethyol propionic acid (DMPA), aqueous polyurethane anionomers were prepared from triethyl amine (TEA) as a neutralizer. The effect of the content of chain extender and the degree of neutralization on the state of emulsification, adhesive strength, viscosity, glass transition temperature and physical properties of emulsion cast film were investigated using UTM, Viscometer and DSC.

  • PDF