• Title/Summary/Keyword: MDGHM-SIFT

Search Result 2, Processing Time 0.02 seconds

Enhanced SIFT Descriptor Based on Modified Discrete Gaussian-Hermite Moment

  • Kang, Tae-Koo;Zhang, Huazhen;Kim, Dong W.;Park, Gwi-Tae
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.572-582
    • /
    • 2012
  • The discrete Gaussian-Hermite moment (DGHM) is a global feature representation method that can be applied to square images. We propose a modified DGHM (MDGHM) method and an MDGHM-based scale-invariant feature transform (MDGHM-SIFT) descriptor. In the MDGHM, we devise a movable mask to represent the local features of a non-square image. The complete set of non-square image features are then represented by the summation of all MDGHMs. We also propose to apply an accumulated MDGHM using multi-order derivatives to obtain distinguishable feature information in the third stage of the SIFT. Finally, we calculate an MDGHM-based magnitude and an MDGHM-based orientation using the accumulated MDGHM. We carry out experiments using the proposed method with six kinds of deformations. The results show that the proposed method can be applied to non-square images without any image truncation and that it significantly outperforms the matching accuracy of other SIFT algorithms.

3D Vision-Based Local Path Planning System of a Humanoid Robot for Obstacle Avoidance

  • Kang, Tae-Koo;Lim, Myo-Taeg;Park, Gwi-Tae;Kim, Dong W.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.879-888
    • /
    • 2013
  • This paper addresses the vision based local path planning system for obstacle avoidance. To handle the obstacles which exist beyond the field of view (FOV), we propose a Panoramic Environment Map (PEM) using the MDGHM-SIFT algorithm. Moreover, we propose a Complexity Measure (CM) and Fuzzy logic-based Avoidance Motion Selection (FAMS) system to enable a humanoid robot to automatically decide its own direction and walking motion when avoiding an obstacle. The CM provides automation in deciding the direction of avoidance, whereas the FAMS system chooses the avoidance path and walking motion, based on environment conditions such as the size of the obstacle and the available space around it. The proposed system was applied to a humanoid robot that we designed. The results of the experiment show that the proposed method can be effectively applied to decide the avoidance direction and the walking motion of a humanoid robot.