• Title/Summary/Keyword: MDA MB 435S

Search Result 3, Processing Time 0.025 seconds

Quantitative Assessment of the Relative Antineoplastic Potential of the n-butanolic Leaf Extract of Annona Muricata Linn. in Normal and immortalized Human Cell Lines

  • George, V. Cijo;Kumar, D.R. Naveen;Rajkumar, V.;Suresh, P.K.;Kumar, R. Ashok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.699-704
    • /
    • 2012
  • Natural products have been the target for cancer therapy for several years but there is still a dearth of information on potent compounds that may protect normal cells and selectively destroy cancerous cells. The present study was aimed to evaluate the cytotoxic potential of n-butanolic leaf extract of $Annona$ $muricata$ L. on WRL-68 (normal human hepatic cells), MDA-MB-435S (human breast carcinoma cells) and HaCaT (human immortalized keratinocyte cells) lines by XTT assay. Prior to cytotoxicity testing, the extract was subjected to phytochemical screening for detecting the presence of compounds with therapeutic potential. Their relative antioxidant properties were evaluated using the reducing power and $DPPH^*$radical scavenging assay. Since most of the observed chemo-preventive potential invariably correlated with the amount of total phenolics present in the extract, their levels were quantified and identified by HPLC analysis. Correlation studies indicated a strong and significant (P<0.05) positive correlation of phenolic compounds with free radical scavenging potential. The results revealed that the extract was moderately cytotoxic to normal cells with a mean IC50 value of 52.4 ${\mu}g$ when compared with those obtained for cancerous cells (IC50 values of 29.2 ${\mu}g$ for MDA-MB-435S and 30.1 ${\mu}g$ for HaCaT respectively). The study confirms the presence of therapeutically active antineoplastic compounds in the n-butanolic leaf extract of $Annona$ $muricata$. Isolation of the active metabolites from the extract is in prospect.

Constitutive Activation of $p70^{S6k}$ in Cancer Cells

  • Kwon, Hyoung-Keun;Bae, Gyu-Un;Yoon, Jong-Woo;Kim, Yong-Kee;Lee, Hoi-Young;Lee, Hyang-Woo;Han, Jeung-Whan
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.685-690
    • /
    • 2002
  • The mitogen-stimulated serine/threonine kinase $p70^{S6k}$ plays an important role in the progression of cells from $G_0/G$_1$$ to S phase of the cell cycle by translational up-regulation of a family of mRNA transcripts family of mRNA transcripts which contain polypyrimidine tract at their 5 transcriptional start site. Here, we report that $p70^{S6k}$ was constitutively phosphorylated and activated to various degrees in serum-deprived AGS, A2058, HT-1376, MG63, MCF7, MDA-MB-435S, MDA-MB-231 and MB-157. Rapamycin treatment induced a significant dephosphorylation and inactivation of $p70^{S6k}$ in all cancer cell lines, while wortmannin, a specific inhibitor of PI3-K, caused a mild dephosphorylation of $p70^{S6k}$ in AGS, MDA-MB-435S and MB-157. In addition, SQ20006, methylxanthine phosphodiesterase inhibitor, reduced the phosphorylation of $p70^{S6k}$ in all cancer cells tested. Consistent with inhibitory effect of rapamycin on $p70^{S6k}$ activity, rapamycin inhibited [$^3H$]-thymidine incorporation and increased the number of cells at $G_{0}G_{1}$ phase. Furthermore, these inhibitory effects were accompanied by the decrease in growth of cancer cells. Taken together, the results indicate that the antiproliferative activity of rapamycin might be attributed to cell cycle arrest at $G_{0}G_{1}$ phase in human cancer cells through the inhibition of constitutively activated $p70^{S6k}$ of cancer cells and suggest $p70^{S6k}$ as a potential target for therapeutic strategies aimed at preventing or inhibiting tumor growth.

Alternative Splicing of Breast Cancer Associated Gene BRCA1 from Breast Cancer Cell Line

  • Lixia, Miao;Zhijian, Cao;Chao, Shen;Chaojiang, Gu;Congyi, Zheng
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.15-21
    • /
    • 2007
  • Breast cancer is the most common malignancy among women, and mutations in the BRCA1 gene produce increased susceptibility to these malignancies in certain families. In this study, the forward 1-13 exons of breast cancer associated gene BRCA1 were cloned from breast cancer cell line ZR-75-30 by RT-PCR method. Sequence analysis showed that nine BRCA1 splice forms were isolated and characterized, compared with wild-type BRCA1 gene, five splice forms of which were novel. These splice isoforms were produced from the molecular mechanism of 5' and 3' alternative splicing. All these splice forms deleting exon 11b and the locations of alternative splicing were focused on two parts:one was exons 2 and 3, and the other was exons 9 and 10. These splice forms accorded with GT-AG rule. Most these BRCA1 splice variants still kept the original reading frame. Western blot analysis indicated that some BRCA1 splice variants were expressed in ZR-75-30 cell line at the protein level. In addition, we confirmed the presence of these new transcripts of BRCA1 gene in MDA-MB-435S, K562, Hela, HLA, HIC, H9, Jurkat and human fetus samples by RT-PCR analysis. These results suggested that breast cancer associated gene BRCA1 may have unexpectedly a large number of splice variants. We hypothesized that alternative splicing of BRCA1 possibly plays a major role in the tumorigenesis of breast and/or ovarian cancer. Thus, the identification of cancer-specific splice forms will provide a novel source for the discovery of diagnostic or prognostic biomarkers and tumor antigens suitable as targets for therapeutic intervention.