• Title/Summary/Keyword: MCZF

Search Result 2, Processing Time 0.014 seconds

The properties of NCZF doped with B-Bi-Zn (B-Bi-Zn 첨가제에 따른 NCZF의 특성)

  • 정승우;김성수;백승철;최우성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.89-92
    • /
    • 1999
  • NCZF ferrites doped with B-Bi-Zn(35-25-40) glass ceramics were prepared to investigate the magnetic properties. The XRD peaks of all of samples were observed only spinel phase. As the additive increased at sintering temperature 750$^{\circ}C$ and 850$^{\circ}C$ for 3 hours, the density and shrinkage increased until 5.28g/㎤ and 20%, respectively. According to SEM images, the growth of grain progressed rapidly at sintering temperature 850$^{\circ}C$ for 3 hours. Increasing the additive, initial permeability and complex permeability decreased. The complex permeabilities as a function of frequency showed high values at a12, a16, b11 and b16 sarmples.

  • PDF

Magnetic Properties of Ni-Cu-Zn Ferrite with varying Ni, Cu (Ni, Cu 변화에 따른 Ni-Cu-Zn Ferrite의 자기적 특성)

  • 백승철;정승우;김태원;김성수;최우성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.259-262
    • /
    • 1999
  • In this study, we investigated magnetic Properties of N $i_{0.2-x}$C $u_{x}$Z $n_{0.305}$F $e_{0.495}$ (x=0 ~0.2) ferrites. As the increased, the density and shrinkage increased until 5.3g/㎤, 20% respects, but the absorption decreased rate until 0.01%. As a results of the density, absorption rate, and shrinkage rate, the grain growth progressed rapidly in x=0.125 at 105$0^{\circ}C$, x=0.075 at 115$0^{\circ}C$, and x=0.025 at 115$0^{\circ}C$ for 3hours. As the CuO concentration increased, initial permeability increased at sintered 105$0^{\circ}C$ and 115$0^{\circ}C$ for 3 hours, but decreased at 125$0^{\circ}C$ for 3 hoers. The complex permeability as a function of frequency were high values at sintered 105$0^{\circ}C$ for 3 hours in x=0.005, 0.075.5.5.5.

  • PDF