• Title/Summary/Keyword: MCU와 센서

Search Result 144, Processing Time 0.02 seconds

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring (사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발)

  • Jang, Sunmin;Cho, Sumin;Joung, Yoonsu;Kim, Jaehyoung;Kim, Hyeonsu;Jang, Dayeon;Ra, Yoonsang;Lee, Donghan;La, Moonwoo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.249-254
    • /
    • 2022
  • With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.

Development of an Automatic Sprayer Arm Control System for Unmanned Pest Control of Pear Trees (배나무 무인 방제를 위한 약대 자동 제어시스템 개발)

  • Hwa, Ji-Ho;Lee, Bong-Ki;Lee, Min-Young;Choi, Dong-Sung;Hong, Jun-Taek;Lee, Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.23 no.1
    • /
    • pp.26-30
    • /
    • 2014
  • Purpose of this study was a development of a sprayer arm auto control system that could be operated according to distance from pear trees for automation of pest control. Auto control system included two parts, hardware and software. First, controller was made with an MCU and relay switches. Two types of ultra-sonic sensors were installed to measure distance from pear trees: one on/off type that detect up to 3 m, and the other continuous type providing 0~5 V output corresponding to distance of 0~3 m. Second, an auto control algorithm was developed to control. Each spraying arm was controlled according to the sensor-based distance from the pear trees. And it could dodge obstacles to protect itself. Max and min signal values were eliminated, when five sensor signals was collected, and then signals were averaged to reduce sensor's noises. According to results of field experiment, auto control test result was better than non auto control test result. Spraying rates were 69.25% (left line) and 98.09% (right line) under non auto control mode, because pear trees were not planted uniformly. But, auto control test's results were 92.66% (left line) and 94.64% (right line). Spraying rate was increased by maintaining distance from tree.

Implement module system for detection sudden unintended acceleration (자동차급발진을 감지하기 위한 모듈 시스템 구현)

  • Cha, Jea-Hui;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.255-257
    • /
    • 2017
  • These days automotive markets are launching models that include a variety of IT technologies. Tesla's Tesla model S and Google's unmanned automobiles are emerging one after another. This type of automobile with IT technology provides various convenience to the driver and the driver is getting benefit by various conveience services. on the contrary, it is also true that defects for errors in electronic components cause accidents that threaten the safety of drivers. There is a sudden unintended acceleration among these accidents. The cause of the accident is not clear yet, but the claim that the ECU device caused by the magnetic field causes accident of the car due is the most reliable. But, in Korea, when occur a car sudden unintended acceleration accident, the char maker often claims that an accident occurred due to driver's pedal malfunction. Also most drivers are responsible for the lack of grounds to refute. In this paper, the pedal operation image of the driver is acquired and the sensor is attached to the control part such as the excel and brake so as to discriminate whether the vehicle sudden unintended acceleration accident is the driver's pedal operation error or the fault of. i have implemented a system that can do this.

  • PDF

The Study on Automatic Temperature Transmission System for the Heating pipe at Home (가정식난방배수관내의자동온도송신장치에대한연구)

  • Park, Chul-Min;Jo, Heung-Kuk;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2641-2646
    • /
    • 2009
  • The more growing on home automation system at automatic control, the more efficiency required for energy consumption and for recycling energy in near future. Heating is essential in general apartment. Heating method is two types in apartment. One uses electricity, and other one uses warm water. If use electricity, is not efficient by rise of electric charges. But, It can reduce much in expense aspect, if use warm water. When use warm water, temperature of warm water is not equal from all pipe parts. Therefore, indoor tempera can be unequal with set point. Solution of these problems is as following. Temperature sensor in warm water attach pipe. The measured temperature transmits by real time. Temperature of warm water controls in receiver side. In this paper, we propose an automatic temperature transmission system for the heating pipe at home, that is a low-power based, and supply the energy source from a small AC motor resided in bottom cement mortal. The proposed system is used in power mechanism from a collision process of water-jet using propeller water-difference and also designed a CPU module by Atmega8 at ATMEL co., Inc. and a communication module by CC1020 at Chipcon co., Inc.