• 제목/요약/키워드: MCS(Monte Carlo Simulation)

검색결과 201건 처리시간 0.026초

몬테카를로 시뮬레이션을 위한 기준으로 한 조도 계산법의 정확도 평가 (Accuracy evaluation of llluminance Calcuation methods Compared with the Monte-Carlo Simulation)

  • 김창섭;심상만
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제10권2호
    • /
    • pp.45-53
    • /
    • 1996
  • 평균조도 계산법 중에서 국내에서 주로 사용되는 3배광법과 ZCM의 정확도를 비교하고, 그 적용한계를 파악하였다. 비교방법은 전반확산형 조명기구와 직접식 조명기구에 대하여 3배광법과 ZCM에 의한 조명률을 계산하고, 이 값들을 이용하여 여러 상황하에서의 평균조도를 계산하였다. 몬테카를로 시뮬레이션으로 동일상황에서의 조도값을 구하고, 이 값과 3배광법과 ZCM의 조도값을 각각 비교하였다. MCS법의 정확도는 Moon위 해석적인 방법과 비교하여 입증하였다. 연구결과는 다음과 같다. 1. 방의 크기에 따른 평균조도 비교에서 전반확 형 조명기구와 직접식 조명기구의 경우 3배광법 보다 ZCM이 평균조도 오차가 적었다. 2. 광원의 수 변화에 따른 평균조도 비교에서 직접식 조명기구의 경우 3배광법은 광원의 수가 증가할수록 평균조도 오차가 감소하다가 다시 증가하였고 ZCM 은 점차적으로 감소하였다. 3. 실내면 반사율 변화에 따른 비교에서 직접식 조명기구의 경우 오차 범의가 3배광법에서 크고 ZCM에서 적게 나타냈다. 4. 방의 형태 변화에 따른 평균조도 비교에서 직접식 조명기구의 경우 방의 폭이 좁고 길이가 긴 공간에서 3배광법과 ZCM모두 오차가 크게 낱났다. 또 정방형에서 가까울수록 오차는 작아지면서 3배광법 보다 ZCM의 오차가 적었다. 그러므로 우리나라에서 혼용되고 있는 3배광법과 ZCM중에서 정확도가 높은 ZCM선택이 바람직하다.

체결부 및 공차를 고려한 구조물의 확률기반 동적 특성 연구 (Probabilistic Analysis of Dynamic Characteristics of Structures considering Joint Fastening and Tolerance)

  • 원준호;강광진;최주호
    • 한국항공운항학회지
    • /
    • 제18권4호
    • /
    • pp.44-50
    • /
    • 2010
  • Structural vibration is a significant problem in many multi-part or multi-component assemblies. In aircraft industry, structures are composed of various fasteners, such as bolts, snap, hinge, weld or other fastener or connector (collectively "fasteners"). Due to these, prediction and design involving dynamic characteristics is quite complicated. However, the current state of the art does not provide an analytical tool to effectively predict structure's dynamic characteristics, because consideration of structural uncertainties (i.e. material properties, geometric tolerance, dimensional tolerance, environment and so on) is difficult and very small fasteners in the structure cause a huge amount of analysis time to predict dynamic characteristics using the FEM (finite element method). In this study, to resolve the current state of the art, a new approach is proposed using the FEM and probabilistic analysis. Firstly, equivalent elements are developed using simple element (e.g. bar, beam, mass) to replace fasteners' finite element model. Developed equivalent elements enable to explain static behavior and dynamic behavior of the structure. Secondly, probabilistic analysis is applied to evaluate the PDF (probability density function) of dynamic characteristics due to tolerance, material properties and so on. MCS (Monte-Carlo simulation) is employed for this. Proposed methodology offers efficiency of dynamic analysis and reality of the field as well. Simple plates joined by fasteners are taken as an example to illustrate the proposed method.

Probabilistic optimal safety valuation based on stochastic finite element analysis of steel cable-stayed bridges

  • Han, Sung-Ho;Bang, Myung-Seok
    • Smart Structures and Systems
    • /
    • 제10권2호
    • /
    • pp.89-110
    • /
    • 2012
  • This study was intended to efficiently perform the probabilistic optimal safety assessment of steel cable-stayed bridges (SCS bridges) using stochastic finite element analysis (SFEA) and expected life-cycle cost (LCC) concept. To that end, advanced probabilistic finite element algorithm (APFEA) which enables to execute the static and dynamic SFEA considering aleatory uncertainties contained in random variable was developed. APFEA is the useful analytical means enabling to conduct the reliability assessment (RA) in a systematic way by considering the result of SFEA based on linearity and nonlinearity of before or after introducing initial tensile force. The appropriateness of APFEA was verified in such a way of comparing the result of SFEA and that of Monte Carlo Simulation (MCS). The probabilistic method was set taking into account of analytical parameters. The dynamic response characteristic by probabilistic method was evaluated using ASFEA, and RA was carried out using analysis results, thereby quantitatively calculating the probabilistic safety. The optimal design was determined based on the expected LCC according to the results of SFEA and RA of alternative designs. Moreover, given the potential epistemic uncertainty contained in safety index, failure probability and minimum LCC, the sensitivity analysis was conducted and as a result, a critical distribution phase was illustrated using a cumulative-percentile.

Flutter reliability analysis of suspension bridges based on multiplicative dimensional reduction method

  • Guo, Junfeng;Zheng, Shixiong;Zhang, Jin;Zhu, Jinbo;Zhang, Longqi
    • Wind and Structures
    • /
    • 제27권3호
    • /
    • pp.149-161
    • /
    • 2018
  • A reliability analysis method is proposed in this paper based on the maximum entropy (MaxEnt) principle in which constraints are specified in terms of the fractional moments instead of integer moments. Then a multiplicative dimensional reduction method (M-DRM) is introduced to compute the fractional moments. The method is applicable for both explicit and implicit limit state functions of complex structures. After two examples illustrate the accuracy and efficiency of this method in comparison to the Monte Carlo simulation (MCS), the method is used to analyze the flutter reliability of suspension bridge. The results show that the empirical formula method in which the limit state function is explicitly represented as a function of variables is only a too conservative estimate for flutter reliability analysis but is not accurate adequately. So it is not suitable for reliability analysis of bridge flutter. The actual flutter reliability analysis should be conducted based on a finite element method in which limit state function is implicitly represented as a function of variables. The proposed M-DRM provide an alternate and efficient way to analyze a much more complicated flutter reliability of long span suspension bridge.

호남고속철도 계획노선에서의 피에조콘 관입시험(CPTu)에 의한 연약지반 특성 평가 (Estimation of Soft Ground Characteristics using the Piezo-Cone Penetration Tests(CPTu) on Honam High-Speed Railway Planning Line)

  • 이일화;권오정;권진수;민경남
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1796-1801
    • /
    • 2007
  • Piezocone penetration testing(CPTu) results such as cone resistance$(q_c)$, sleeve friction$(f_s)$, and pore pressure(u), have been carried out at 5 sites in Honam high-speed railway areas of Korea, in order to continuously estimate the characteristics of soil layers and the undrained shear strength$(S_u)$ in a soft ground. For the applications of the conventional CPTu results to undrained shear strength, the cone factors$(N_{kt})$ were deduced based on Field vane tests, and Monte-Carlo Simulation(MCS). Moreover the correlations of the undrained shear strength of CPTu by soil depths were compared and revised with the results of triaxial compression(UU test), field vane and Dilatometer tests(DMT). The depths of soft foundation at 5 sites in Honam high-speed railway areas were calculated based on the results of the various field tests in addition CPTu. The applicability of CPTu for a soft foundation criterion referred to the criteria of high-speed railway and related agencies in Korea was evaluated.

  • PDF

A Fuzzy Inference based Reliability Method for Underground Gas Pipelines in the Presence of Corrosion Defects

  • 김성준;최병학;김우식;김익중
    • 한국지능시스템학회논문지
    • /
    • 제26권5호
    • /
    • pp.343-350
    • /
    • 2016
  • Remaining lifetime prediction of the underground gas pipeline plays a key role in maintenance planning and public safety. One of main causes in the pipeline failure is metal corrosion. This paper deals with estimating the pipeline reliability in the presence of corrosion defects. Because a pipeline has uncertainty and variability in its operation, probabilistic approximation approaches such as first order second moment (FOSM), first order reliability method (FORM), second order reliability method (SORM), and Monte Carlo simulation (MCS) are widely employed for pipeline reliability predictions. This paper presents a fuzzy inference based reliability method (FIRM). Compared with existing methods, a distinction of our method is to incorporate a fuzzy inference into quantifying degrees of variability in corrosion defects. As metal corrosion depends on the service environment, this feature makes it easier to obtain practical predictions. Numerical experiments are conducted by using a field dataset. The result indicates that the proposed method works well and, in particular, it provides more advisory estimations of the remaining lifetime of the gas pipeline.

전기자동차 보급을 위한 농촌지역의 주유소 기반 급속 충전인프라 구축 방안 분석 (Analysis of Construction Plans of Rapid Charging Infrastructures based on Gas Stations in Rural Areas to Propagate Electric Vehicles)

  • 김솔희;김태곤;서교
    • 농촌계획
    • /
    • 제21권1호
    • /
    • pp.19-28
    • /
    • 2015
  • As environmental concerns including climate change drive the strong regulations for car exhaust emissions, electric vehicles attract the public eye. The purpose of this study is to identify rural areas vulnerable for charging infrastructures based on the spatial distributions of the current gas stations and provide the target dissemination rates for promoting electric cars. In addition, we develop various scenarios for finding optimal way to expand the charging infrastructures through the administrative districts data including 11,677 gas stations, the number of whole national gas stations. Gas stations for charging infrastructures are randomly selected using the Monte Carlo Simulation (MCS) method. Evaluation criteria for vulnerability assessment include five considering the characteristic of rural areas. The optimal penetration rate is determined to 21% in rural areas considering dissemination efficiency. To reduce the vulnerability, the charging systems should be strategically installed in rural areas considering geographical characteristics and regional EV demands.

BIM기반 확률론적 GMP 산정방안에 관한 연구 (Probabilistic GMP Calculation Method based on BIM)

  • 고건호;김정훈;김현주;현창택
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.122-123
    • /
    • 2018
  • Recently, CM at Risk delivery system(CM@R) that could solve the problems of Design Bid Build delivery(DBB) system has been emerging. In the CM@R delivery system, the contractor negotiates for a maximum guaranteed price(GMP) with the client at the design stage, and the contractor carries out the construction within the GMP. In CM @ R, the construction company with expertise in construction participates from the design stage to reflects the construction know-how in the design. On the other hand, the modification design frequently occurs due to the change of the construction cost when negotiating the GMP. In addition, uncertainties are inherent in the GMP calculation because the calculation is based on unfinished drawings and documents. This study proposes a probabilistic GMP estimation method applying MCS to the BIM - based cost prediction model, in order to extract the accurate quantity information when estimating the GMP and to cope with the change of the construction cost inherent in uncertainty.

  • PDF

Multiple failure criteria-based fragility curves for structures equipped with SATMDs

  • Bakhshinezhad, Sina;Mohebbi, Mohtasham
    • Earthquakes and Structures
    • /
    • 제17권5호
    • /
    • pp.463-475
    • /
    • 2019
  • In this paper, a procedure to develop fragility curves of structures equipped with semi-active tuned mass dampers (SATMDs) considering multiple failure criteria has been presented while accounting for the uncertainties of the input excitation, structure and control device parameters. In this procedure, Latin hypercube sampling (LHS) method has been employed to generate 30 random SATMD-structure systems and nonlinear incremental dynamic analysis (IDA) has been conducted under 20 earthquakes to determine the structural responses, where failure probabilities in each intensity level have been evaluated using Monte Carlo simulation (MCS) method. For numerical analysis, an eight-story nonlinear shear building frame with bilinear hysteresis material behavior has been used. Fragility curves for the structure equipped with optimal SATMDs have been developed considering single and multiple failure criteria for different performance levels and compared with that of uncontrolled structure as well as structure controlled using passive tuned mass damper (TMD). Numerical analysis has shown the capability of SATMDs in significant enhancement of the seismic fragility of the nonlinear structure. Also, considering multiple failure criteria has led to increasing the fragility of the structure. Moreover, it is observed that the influence of the uncertainty of input excitation with respect to the other uncertainties is considerable.

Global sensitivity analysis improvement of rotor-bearing system based on the Genetic Based Latine Hypercube Sampling (GBLHS) method

  • Fatehi, Mohammad Reza;Ghanbarzadeh, Afshin;Moradi, Shapour;Hajnayeb, Ali
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.549-561
    • /
    • 2018
  • Sobol method is applied as a powerful variance decomposition technique in the field of global sensitivity analysis (GSA). The paper is devoted to increase convergence speed of the extracted Sobol indices using a new proposed sampling technique called genetic based Latine hypercube sampling (GBLHS). This technique is indeed an improved version of restricted Latine hypercube sampling (LHS) and the optimization algorithm is inspired from genetic algorithm in a new approach. The new approach is based on the optimization of minimax value of LHS arrays using manipulation of array indices as chromosomes in genetic algorithm. The improved Sobol method is implemented to perform factor prioritization and fixing of an uncertain comprehensive high speed rotor-bearing system. The finite element method is employed for rotor-bearing modeling by considering Eshleman-Eubanks assumption and interaction of axial force on the rotor whirling behavior. The performance of the GBLHS technique are compared with the Monte Carlo Simulation (MCS), LHS and Optimized LHS (Minimax. criteria). Comparison of the GBLHS with other techniques demonstrates its capability for increasing convergence speed of the sensitivity indices and improving computational time of the GSA.