• Title/Summary/Keyword: MCPVT

Search Result 5, Processing Time 0.017 seconds

A Study on Risk Assessment of Methyl Ethyl Ketone Peroxide (메틸에틸케톤 퍼옥사이드의 위험성평가에 관한 연구)

  • Mok, Yun-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.34-39
    • /
    • 2005
  • To evaluate characteristics of explosion hazard of Methyl Ethyl Ketone Peroxide, MCPVT was used for this study. In result maximum explosion pressure and maximum explosion pressure rising velocity of MEK-PO were $12.1kgf/cm^2\;and\;106.81kgf/cm^2/s$. As a result or adding metal powder to estimate hazard of explosion, the maximum explosion pressure and maximum explosion pressure rising velocity according to adding Fe powder in MEK-PO increased. In opposite, those decreased resulting in adding Ca powder in MEK-PO.

A Study on the Explosion Pressure Behavior of Methyl Ethyl Ketone Peroxide with Addition of Sulfuric Acid (황산의 첨가에 따른 Methyl Ethyl Ketone Peroxide의 폭발압력거동에 관한 연구)

  • Choi Jae-Wook;Jung Doo-Kyun;Choi Il-Gon
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.4 s.25
    • /
    • pp.50-54
    • /
    • 2004
  • To examine the danger of explosion caused by decomposition explosion of Methyl Ethyl Ketone Peroxide, the mini cup pressure vessel tester (MCPVT) was used in the experiment. The maximum explosion pressure increased as the amount of $98\%H_2SO_4$ added to MEKPO increased from $0\%$ to $1\%,\;3\%$, and $5\%$, and the maximum pressure rising velocity increased as well. In addition, the temperature under the pressure at which decomposition starts decreased from $168.16^{\circ}C$ to $126.76^{\circ}C,\;91.21^{\circ}C$, and $81.25^{\circ}C$ as the amount of $H_2SO_4$ added increased.

  • PDF

A Study on Thermal Characteristics of Biodiesel (바이오디젤의 열적특성에 관한 연구)

  • Bae, Byong-Mok;Lim, Woo-Sub;SaKong, Seong-Ho;Mok, Yun-Soo;Choi, Jae-Wook
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.92-97
    • /
    • 2010
  • A study is conducted on thermal characteristics of biodiesel which is already being produced in many countries because of its stable supply of energy in non oil-producing countries and economical benefits against increasing oil price, and environment conservation. So biodiesel has been used as important energy source in the fuel fields and a mount of production has increased year by year. Therefore, it is very important to find out the thermal characteristics of biodiesel for ignition temperature, maximum pressure and thermal behavior. The purpose of this study is to compare on thermal characteristics of biodiesel, petroleum diesel and those mixtures. Also, the main study was performed by flash point testers and modified closed type of pressure vessel test (MCPVT). Based on the data of flash point and MCPVT, the ignition temperature and the maximum pressure of biodiesel was $182^{\circ}C$ and 40.1bar, and petroleum diesel was $54^{\circ}C$ and 29.8bar.

Safety Evaluation for the risk of explosion on Lithium Batteries (리튬전지의 폭발 위험성평가)

  • Kwon, Kyung-Ok;Kim, Yeong-Geun;Ma, Jin-Soo
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.371-375
    • /
    • 2011
  • 전지는 고에너지 밀도 제품으로 화학에너지를 전환시켜 전기에너지를 운반하는 것이다. 본 실험에서는 리튬 이온전지의 열적 안정성의 위험을 평가하기 위하여 리튬이온 전해액을 Differential Scanning Calorimeter(DSC)와 modified cloed pressure vessel test(MCPVT)로 분석하였다. 실험 결과 리튬전지는 다른 전지보다 위험하며, 전지를 잘못 사용하면 열적 반응성은 연소성 물질인 전해질을 포함하고 이것이 열을 발생시켜 폭발하거나 화재가 발생할 수 있음을 제시하였다.

  • PDF

A Study of Characteristics such as Spontaneous Ignition, Flash Point and Explosion Behavior of Methyl Ethyl Ketone Peroxide in ender to Determine its Hazardousness (Methyl Ethyl Ketone Peroxide의 위험성을 판단하기 위한 자연발화, 인화점 및 폭발거동에 관한 기초 연구)

  • Jung, Doo-Kyun;Choi, Jae-Wook;Lee, In-Sik;Lim, Woo-Sub;Kim, Dong-Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.78-83
    • /
    • 2005
  • In this study, the evaluate characteristics of fire and explosion of MEK-PO are subjected to spontaneous ignition, flash point and explosion hazard. The minimum ignition temperature and instantaneous ignition temperature for MEK-PO were $188.5^{\circ}C\;and\;230^{\circ}C\;at\;225{\mu}L$. In addition The flash point for MEK-PO was obtained at $49^{\circ}C$. Furthermore, the maximum explosion pressure and the maximum explosion pressure rising velocity: using MCPVT (mini cup pressure vessel tester) were $10.82kgf/cm^2\;and\;33.72kgf/cm^2{\cdot}s$.