• Title/Summary/Keyword: MCNPX

Search Result 175, Processing Time 0.036 seconds

Consideration of the X-ray Spectrum Change and Resolution According to Added Filters, SID, A-Si (CsITl) in the Imaging System (A-Si(CsITl) 영상시스템에서 부가필터, SID에 따른 X선 스펙트럼변화와 해상력에 대한 고찰)

  • An, Hyeon;Kim, Jung-Hoon;Lee, Dongyeon;Ko, Sungjin;Kim, Changsoo
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.681-688
    • /
    • 2016
  • This study assess their quality of radiation on analysis of the spectrum of resolution suggesting IEC 61267 in radiation quality that RQA3, RQA5, RQA7, RQA9 and combination of clinical condition using several quality of radiation. In experiments edge method first, the spatial resolution assessment used image of the additional filter and SID is obtained the IEC 62220-1, spatial resolution and sharpness of the obtained image was evaluated in the MTF value 10%(0.1), MTF value 50%(0.5) using a Matlab program. Second, MCNPX simulation used spatial resolution analysis was radiation quality particle fluence and spectrum analysis in energy. As a result, make use of additional filter, image quality evaluation of SID that RQA3 radiation quality combination qualification is higher spatial resolution and sharpness make unused of additional filter and SID 100cm. RQA7 radiation quality combination qualification is higher that spatial resolution make unused of additional filter and SID 150cm. RQA9 radiation quality combination qualification is higher that spatial resolution and sharpness make used of additional filter and SID 180cm. spectrum analysis of radiation quality by reducing consequent errors occurring in the experiment that error due to the reproducibility of the X-ray tube, occur in an error of correction the detector suggest ideal conditions from spectrum analysis through MCNPX simulation. In conclusion, by suggesting spatial resolution and sharpness of result for various radiation quality, It provide basic data that radiation quality condition and quantitative assessment method for laboratory in clinical using detector evaluation.

A Study on Radiation Shielding Materials for Protective Garments using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 보호복용 방사선 차폐 소재 연구)

  • Bae, Manjae;Lee, Hyungmin
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.239-252
    • /
    • 2015
  • Purpose: Lead has been widely used in radiation shielding for its low price and high workability. Recently in several europe countries, use of lead was banned for environmental issues. Also lead can cause health problems like alergies. Alternative materials for lead are highly required. The purpose of this study was to propose lead free radiation shielding material. Methods: Research of radiation shielding in Korea is not easy for certain limits such as radiation materials, experimental facilities and places. The collected data through the research were simulated using MCNPX. The simulation tools used for this study were utilized Monte Carlo method. Results: we suggest new design of lead free radiation shielding material using MCNPX code comparing shielding performance of new composite materials to lead. Conclusion: This newly introduced nano-scale composite of metal and polymer makes new chance for highly lightened radiation protective garments with endurable shielding performance.

A feasibility study of the Iranian Sun mather type plasma focus source for neutron capture therapy using MCNP X2.6, Geant4 and FLUKA codes

  • Nanbedeh, M.;Sadat-Kiai, S.M.;Aghamohamadi, A.;Hassanzadeh, M.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1002-1007
    • /
    • 2020
  • The purpose of the current study was to evaluate a spectrum formulation set employed to modify the neutron spectrum of D-D fusion neutrons in a IS plasma focus device using GEANT4, MCNPX2.6, and FLUKA codes. The set consists of a moderator, reflector, collimator and filters of fast neutron and gamma radiation, which placed on the path of 2.45 MeV neutron energy. The treated neutrons eliminate cancerous tissue with minimal damage to other healthy tissue in a method called neutron therapy. The system optimized for a total neutron yield of 109 (n/s). The numerical results indicate that the GEANT4 code for the cubic geometry in the Beam Shaping Assembly 3 (BSA3) is the best choice for the energy of epithermal neutrons.

Diagnostic methods applied to Esfahan light water subcritical reactor (ELWSCR)

  • Arkani, Mohammad
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2133-2150
    • /
    • 2021
  • In this work, Esfahan light water subcritical reactor (ELWSCR) is analysed using experimental and theoretical diagnostic methods. Important neutronic parameters of the system such as prompt neutron lifetime, delayed neutron fraction, prompt neutron decay constant, negative reactivity of the core, fuel and moderator temperature coefficient of reactivity, and overall and local void coefficient of reactivity are estimated. Also, neutron flux distribution, reflector saving, water level effect, and lattice pitch of the core including operating point of the facility are studied in details. Theoretical results are calculated by MCNPX and measurements are performed utilizing zero power reactor noise method. Detailed descriptions of the results are explained in the text.

Modeling and experimental production yield of 64Cu with natCu and natCu-NPs in Tehran Research Reactor

  • Karimi, Zahra;Sadeghi, Mahdi;Ezati, Arsalan
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.269-274
    • /
    • 2019
  • $^{64}Cu$ is a favorable radionuclide in nuclear medicine applications because of its unique characteristics such as three types of decay (electron capture, ${\beta}^-$ and ${\beta}^+$) and 12.7 h half-life. Production of $^{64}Cu$ by irradiation $^{nat}Cu$ and $^{nat}CuNPs$ in Tehran Research Reactor was investigated. The characteristics of copper nanoparticles were investigated with SEM, TEM and XRD analysis. The cross section of $^{63}Cu(n,{\gamma})^{64}Cu$ reaction was done with TALYS-1.8 code. The activity value of $^{64}Cu$ was calculated with theoretical approach and MCNPX-2.6 code. The results were compared with related experimental results which showed good adaptations between them.