• 제목/요약/키워드: MCNP4C

검색결과 43건 처리시간 0.026초

Radiological analysis of transport and storage container for very low-level liquid radioactive waste

  • Shin, Seung Hun;Choi, Woo Nyun;Yoon, Seungbin;Lee, Un Jang;Park, Hye Min;Park, Seong Hee;Kim, Youn Jun;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4137-4141
    • /
    • 2021
  • As NPPs continue to operate, liquid waste continues to be generated, and containers are needed to store and transport them at low cost and high capacity. To transport and store liquid phase very low-level radioactive waste (VLLW), a container is designed by considering related regulations. The design was constructed based on the existing container design, which easily transports and stores liquid waste. The radiation shielding calculation was performed according to the composition change of barium sulfate (BaSO4) using the Monte Carlo N-Particle (MCNP) code. High-density polyethylene (HDPE) without mixing the additional BaSO4, represented the maximum dose of 1.03 mSv/hr (<2 mSv/hr) and 0.048 mSv/hr (<0.1 mSv/hr) at the surface of the inner container and at 2 m away from the surface, respectively, for a 10 Bq/g of 60Co source. It was confirmed that the dose from the inner container with the VLLW content satisfied the domestic dose standard both on the surface of the container and 2 m from the surface. Although it satisfies the dose standard without adding BaSO4, a shielding material, the inner container was designed with BaSO4 added to increase radiation safety.

연구로 2호기 방사화 수조 콘크리트의 재고량 평가에 관한 연구 (A Study on the Inventory Estimation for the Activated Bioshield Concrete of KRR-2)

  • 홍상범;서범경;조동건;정경환;문제권
    • Journal of Radiation Protection and Research
    • /
    • 제37권4호
    • /
    • pp.202-207
    • /
    • 2012
  • 방사능재고량 평가는 해체과정에서 요구되는 계획 수립, 비용 평가, 위해도 평가, 폐기물관리 및 잔류방사능 조사 등에 중요한 영향을 준다. 연구로 2호기 해체사업은 2009년 완료하였고, 해체과정에서 많은 양의 방사화 콘크리트가 발생되었다. 연구로 수조 콘크리트는 연구로 운영과정에서 발생된 중성자와 상호작용에 의해 콘크리트 내 극미량으로 존재하는 불순물이 방사화되어 다양한 핵종이($^3H$, $^{14}C$, $^{55}Fe$, $^{60}Co$ $^{63}Ni$, $^{134}Cs$, $^{152}Eu$$^{154}Eu$) 검출되었다. 본 논문에서는 연구로 방사화 콘크리트에 대한 핵종 재고량을 계산하기 위해 MCNP5, ORIGEN2.1를 조합하여 평가하였고, 계산 결과는 측정된 결과와 비교평가를 수행하였다. 연구로 2호기 수조 콘크리트의 경우 연구로 운전정지 후 12년 동안 안전격리 기간을 거쳐 해체가 착수되었으며, 해체시점에서 $^3H$, $^{55}Fe$, $^{60}Co$$^{152}Eu$ 방사능이 전체방사능의 99.8%를 차지하였다. 운전기간 및 냉각기간에 따른 방사화 재고량의 영향을 분석하였다.

MEASUREMENT OF THE D-D NEUTRON GENERATION RATE BY PROTON COUNTING

  • Kim, In-Jung;Jung, Nam-Suk;Choi, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • 제40권4호
    • /
    • pp.299-304
    • /
    • 2008
  • A detection system was set up to measure the neutron generation rate of a recently developed D-D neutron generator. The system is composed of a Si detector, He-3 detector, and electronics for pulse height analysis. The neutron generation rate was measured by counting protons using the Si detector, and the data was crosschecked by counting neutrons with the He-3 detector. The efficiencies of the Si and He-3 detectors were calibrated independently by using a standard alpha particle source $^{241}Am$ and a bare isotopic neutron source $^{252}Cf$, respectively. The effect of the cross-sectional difference between the D(d,p)T and $D(d,n)^3He$ reactions was evaluated for the case of a thick target. The neutron generation rate was theoretically corrected for the anisotropic emission of protons and neutrons in the D-D reactions. The attenuations of neutron on the path to the He-3 detector by the target assembly and vacuum flange of the neutron generator were considered by the Monte Carlo method using the MCNP 4C2 code. As a result, the neutron generation rate based on the Si detector measurement was determined with a relative uncertainty of ${\pm}5%$, and the two rates measured by both detectors corroborated within 20%.

Investigating Dynamic Parameters in HWZPR Based on the Experimental and Calculated Results

  • Nasrazadani, Zahra;Behfarnia, Manochehr;Khorsandi, Jamshid;Mirvakili, Mohammad
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1120-1125
    • /
    • 2016
  • The neutron decay constant, ${\alpha}$, and effective delayed neutron fraction, ${\beta}_{eff}$, are important parameters for the control of the dynamic behavior of nuclear reactors. For the heavy water zero power reactor (HWZPR), this document describes the measurements of the neutron decay constant by noise analysis methods, including variance to mean (VTM) ratio and endogenous pulse source (EPS) methods. The measured ${\alpha}$ is successively used to determine the experimental value of the effective delayed neutron fraction as well. According to the experimental results, ${\beta}_{eff}$ of the HWZPR reactor under study is equal to 7.84e-3. This value is finally used to validate the calculation of the effective delayed neutron fraction by the Monte Carlo methods that are discussed in the document. Using the Monte Carlo N-Particle (MCNP)-4C code, a ${\beta}_{eff}$ value of 7.58e-3 was obtained for the reactor under study. Thus, the relative difference between the ${\beta}_{eff}$ values determined experimentally and by Monte Carlo methods was estimated to be < 4%.

A NOVEL APPROACH TO FIND OPTIMIZED NEUTRON ENERGY GROUP STRUCTURE IN MOX THERMAL LATTICES USING SWARM INTELLIGENCE

  • Akbari, M.;Khoshahval, F.;Minuchehr, A.;Zolfaghari, A.
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.951-960
    • /
    • 2013
  • Energy group structure has a significant effect on the results of multigroup transport calculations. It is known that $UO_2-PuO_2$ (MOX) is a recently developed fuel which consumes recycled plutonium. For such fuel which contains various resonant nuclides, the selection of energy group structure is more crucial comparing to the $UO_2$ fuels. In this paper, in order to improve the accuracy of the integral results in MOX thermal lattices calculated by WIMSD-5B code, a swarm intelligence method is employed to optimize the energy group structure of WIMS library. In this process, the NJOY code system is used to generate the 69 group cross sections of WIMS code for the specified energy structure. In addition, the multiplication factor and spectral indices are compared against the results of continuous energy MCNP-4C code for evaluating the energy group structure. Calculations performed in four different types of $H_2O$ moderated $UO_2-PuO_2$ (MOX) lattices show that the optimized energy structure obtains more accurate results in comparison with the WIMS original structure.

DESIGN OF A NEUTRON SCREEN FOR 6-INCH NEUTRON TRANSMUTATION DOPING IN HANARO

  • Kim, Hak-Sung;Oh, Soo-Youl;Jun, Byung-Jin;Kim, Myong-Seop;Seo, Chul-Gyo;Kim, Heon-Il
    • Nuclear Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.675-680
    • /
    • 2006
  • The neutron transmutation doping of silicon (NTD), as a method to produce a high quality semiconductor, utilizes the transmutation of a silicon element into phosphorus by neutron absorption in a silicon single crystal. In this paper, we present the design of a neutron screen for a 6' Si ingot irradiation in the NTD2 hole of HANARO. The goal of the design is to achieve an even flat axial distribution of the resistivity, or $Si^{30}(n,{\gamma})Si^{31}$ reaction rate, in the irradiated Si ingot. We used the MCNP4C code to simulate the neutron screen and to calculate the reaction rate distribution in the Si ingot. The fluctuations in the axial distribution were estimated to be within ${\pm}2.0%$ from the average for the final neutron screen design; thus, they satisfy the customers' requirement for uniform irradiation. On the other hand, we determined the optimal insertion depths of the Si ingots by varying the critical control rod position, which greatly affects the axial flux distribution.

Use of Glucose Oxidase Immobilized on Magnetic Chitosan Nanoparticles in Probiotic Drinking Yogurt

  • Ali Afjeh, Maryam Ein;Pourahmad, Rezvan;Akbari-adergani, Behrouz;Azin, Mehrdad
    • 한국축산식품학회지
    • /
    • 제39권1호
    • /
    • pp.73-83
    • /
    • 2019
  • The aim of this study was to investigate the effect of glucose oxidase (GOX) immobilized on magnetic chitosan nanoparticles (MCNP) on the viability of probiotic bacteria and the physico-chemical properties of drinking yogurt. Different concentrations (0, 250, and 500 mg/kg) of free and immobilized GOX were used in probiotic drinking yogurt samples. The samples were stored at $4^{\circ}C$ for 21 d. During storage, reduction of the number of probiotic bacteria in the samples with enzyme was lower than the control sample (without enzyme). The sample containing 500 mg/kg immobilized enzyme had the highest number of Bifidobacterium lactis and Lactobacillus acidophilus. The samples containing immobilized enzyme had lower acidity than other samples. Moreover, moderate proteolytic activity and enough contents of flavor compounds were observed in these samples. It can be concluded that use of immobilized GOX is economically more feasible because of improving the viability of probiotic bacteria and the physico-chemical characteristics of drinking yogurt.

Reevaluation of Photon Activation Yields of 11C, 13N, and 15O for the Estimation of Activity in Gas and Water Induced by the Operation of Electron Accelerators for Medical Use

  • Masumoto, Kazuyoshi;Matsumura, Hiroshi;Kosako, Kazuaki;Bessho, Kotaro;Toyoda, Akihiro
    • Journal of Radiation Protection and Research
    • /
    • 제41권3호
    • /
    • pp.286-290
    • /
    • 2016
  • Background: Activation of air and water in the electron linear accelerator for medical use has not been considered severely. By the new Japanese regulation for protection of radiation hazard, it became indispensable to evaluate of activation of air and water in the accelerator room. The measurement of induced activity in air and water components in the electron energy region of 10 to 20 MeV is very difficult, because this energy region is close to the threshold energy region of photonuclear reactions. Then, we measured the photonuclear reaction yields of $^{13}N$, $^{15}O$, and $^{11}C$ by using the electron linear accelerator. Obtained data were compared with the data calculated by the Monte Carlo method. Materials and Methods: An activation experiment was performed at the Research Center for Electron Photon Science, Tohoku University. Highly purified $SiO_2$, $Si_3N_4$, and carbon disks were irradiated for 10 minutes by bremsstrahlung converted by a tungsten plate. Induced activity from C, N, and O was obtained. Monte Carlo calculation was performed using MCNP5 and AERY (DCHAIN-SP) to simulate the experimental condition. Cross section data were adopted the KAERI dataset. Results and Discussion: In our experiment in hospital, calculated values were not agreed with experimental values. It might be three possible reasons as the cause of this deference, such as irradiation energy, calculation procedure and cross section data. Obtained data of this work, calculated and experimental values were good agreement with each other within one order. In this work, we used KAERI dataset of photonuclear reaction instead of JENDL. Therefore, it was found that the photonuclear cross section data of light elements are most important for yield calculation in these reactions. Conclusion: Further improvement for calculation using a new dataset JENDL/PD-2015 and considering electron energy spreading will be needed.

Study on Electrical Properties of X-ray Sensor Based on CsI:Na-Selenium Film

  • Park Ji-Koon;Kang Sang-Sik;Lee Dong-Gil;Choi Jang-Yong;Kim Jae-Hyung;Nam Sang-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권3호
    • /
    • pp.10-14
    • /
    • 2003
  • In this paper, we have introduced the x-ray detector built with a CsI:Na scintillation layer deposited on amorphous selenium. To determine the thickness of the CsI:Na layer, we have estimated the transmission spectra and the absorption of continuous x-rays in diagnostic range by using computer simulation (MCNP 4C). A x-ray detector with 65 ${\mu}m$-CsI:Na/30 ${\mu}m$-Se layer has been fabricated by a thermal evaporation technique. SEM and PL measurements have been performed. The dark current and x-ray sensitivity of the fabricated detector has been compared with that of the conventional a-Se detector with 100 ${\mu}m$ thickness. Experimental results show that both detectors exhibit a similar dark current, which was of a low value below $400 pA/cm^2$ at 10 V/${\mu}m$. However, the CsI:Na-Se detector indicates high x-ray sensitivity, roughly 1.3 times that of a conventional a-Se detector. Furthermore, a CsI:Na-Se detector with an aluminium reflective layer shows a 1.8 times higher x-ray sensitivity than an a-Se detector. The hybrid type detector proposed in this work exhibits a low dark current and high x-ray sensitivity, and, in particular, excellent linearity to the x-ray exposure dose.

DESIGN OPTIMIZATION OF RADIATION SHIELDING STRUCTURE FOR LEAD SLOWING-DOWN SPECTROMETER SYSTEM

  • KIM, JEONG DONG;AHN, SANGJOON;LEE, YONG DEOK;PARK, CHANG JE
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.380-387
    • /
    • 2015
  • A lead slowing-down spectrometer (LSDS) system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as $^{235}U$, $^{239}Pu$, $^{241}Pu$, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea) is planned to utilize a high-flux ($>10^{12}n/cm^2{\cdot}s$) neutron source comprised of a high-energy (30 MeV)/high-current (~2 A) electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (< $0.06{\mu}Sv/h$), a few shielding materials [high-density polyethylene (HDPE)eBorax, $B_4C$, and $Li_2CO_3$] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in the near future.