• Title/Summary/Keyword: MCNP 4.2 code

Search Result 50, Processing Time 0.021 seconds

Design of Neutron Shielder for Reducing Background of Low Level Gamma Ray Spectrometer (극저준위 감마선 분광시스템의 백그라운드 저감화를 위한 중성자 차폐체 설계)

  • Kim, Tae-Wook;Park, Jong-Mook;Park, Jong-Gil;Shin, Sang-Woon;Jun, Jae-Shik
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.67-71
    • /
    • 2001
  • In order to shield the neutrons affecting the background of Low Level Gamma Ray Spectrometer, a neutron shielder was designed. The method used in this study for neutron shielding was the deceleration of fast neutrons by high density polyethylene(HDPE) and the absorption of those slowing-down neutrons by $B_4C$. The calculation results of neutron Interaction in HDPE using Monte Carlo simulation code MCNP4B showed that the thermal-neutron flux was maximum at 10 cm thickness of HDPE. The results also showed that 95% of the thermal neutrons were absorbed by 2 mm thickness of $B_4C$ absorber Consisted of 30 w% $B_4C$ and 70 w% polymer. The results of the Monte Carlo calculation were in good agreement with the experimental value obtained by a neutron shielding apparatus designed for this purpose.

  • PDF

Burnup analysis for HTR-10 reactor core loaded with uranium and thorium oxide

  • Alzamly, Mohamed A.;Aziz, Moustafa;Badawi, Alya A.;Gabal, Hanaa Abou;Gadallah, Abdel Rraouf A.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.674-680
    • /
    • 2020
  • We used MCNP6 computer code to model HTR-10 core reactor. We used two types of fuel; UO2 and (Th+Pu)O2 mixture. We determined the critical height at which the reactor approached criticality in both two cases. The neutronic and burnup parameters were investigated. The results indicated that the core fueled with mixed (Th+Pu)O2, achieved about 24% higher fuel cycle length than the UO2 case. It also enhanced safeguard security by burning Pu isotopes. The results were compared with previously published papers and good agreements were found.

Analysis of the Photon Beam Characteristics by Medical Linear Accelerator According to Various Target Materials using MCNP-code (MCNP-code를 이용한 의료용 선형가속기의 타깃 재질에 따른 광자선 특성 분석)

  • Lee, Dong-Yeon;Park, Eun-Tae;Kim, Jung-Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.197-203
    • /
    • 2017
  • This study purpose is propose the basic data for selecting the optimal target material by analyzing the photon characteristics of various materials which was located in the head of medical linear accelerator. In this study, energy spectrum of 6, 15 MV photon beams were compared and analyzed for 13 target materials using MCNPX of Monte Carlo method. The mean energy for the 6 MV energy spectrum was 1.69 ~ 1.84 MeV and that for the 15 MV was 3.38 ~ 3.56 MeV, according to the target material. The flux for the 6 MV energy spectrum was $1.64{\times}10^{-5}{\sim}1.80{\times}10^{-5}{\sharp}/cm^2/e$ and that for the 15 MV was $1.76{\times}10^{-4}{\sim}1.85{\times}10^{-4}{\sharp}/cm^2/e$. The analysis shows that the average energy and flux increase with higher atomic number of the target material. Based on this study, it is possible to present the basic data about the physical characteristics of the photon, and it will be possible to select the target later considering economic, efficiency and physical aspect.

Assessment of Effective Doses in the Radiation Field of Contaminated Ground Surface by Monte Carlo Simulation (몬테칼로 시뮬레이션에 의한 지표면 오염 방사선장에서의 유효선량 평가)

  • Chang, Jai-Kwon;Lee, Jai-Ki;Chang, Si-Young
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.205-213
    • /
    • 1999
  • Effective dose conversion coefficients from unit activity radionuclides contaminated on the ground surface were calculated by using MCNP4A rode and male/female anthropomorphic phantoms. The simulation calculations were made for 19 energy points in the range of 40 keV to 10 MeV. The effective doses E resulting from unit source intensity for different energy were compared to the effective dose equivalent $H_E$ of previous studies. Our E values are lower by 30% at low energy than the $H_E$ values given in the Federal Guidance Report of USEPA. The effective dose response functions derived by polynomial fitting of the energy-effective dose relationship are as follows: $f({\varepsilon})[fSv\;m^2]=\;0.0634\;+\;0.727{\varepsilon}-0.0520{\varepsilon}^2+0.00247{\varepsilon}^3,\;where\;{\varepsilon}$ is the gamma energy in MeV. Using the response function and the radionuclide decay data given in ICRP 38, the effective dose conversion coefficients for unit activity contamination on the ground surface were calculated with addition of the skin dose contribution of beta particles determined by use of the DOSEFACTOR code. The conversion coefficients for 90 important radionuclides were evaluated and tabulated. Comparison with the existing data showed that a significant underestimates could be resulted when the old conversion coefficients were used, especially for the nuclides emitting low energy photons or high energy beta particles.

  • PDF

Nuclear Design Methodology of Fission Moly Target for Research Reactor

  • Cho, Dong-Keun;Kim, Myung-Hyun;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.365-374
    • /
    • 1999
  • A nuclear design of fission moly production targets for a research reactor, HANARO was peformed. It was found that the use of MCNP-4A, ORIGEN-2 code was reliable for the analysis of production characteristics of $^{99}$ Mo in a target fuel at an irradiation holes. A parametric study was done for the optimization of target location, target dimension, target shape and fuel materials. It was shown that a fuel thickness was the most sensitive parameters and electro-deposited target gave the highest 99Mo yield ratio. A pellet target with vibro-compaction powder, however, showed the largest production capacity and better engineering feasibility even with less yield ratio. Ten kinds of optimized target design for both LEU and HEU satisfied all the given design constraints. The most favorable design was the HEU ring-shaped electro-deposited target, considered the safety limit, production yield, chemical process easiness, yield ratio, and amount of radioactive waste.

  • PDF

Understanding Phytosanitary Irradiation Treatment of Pineapple Using Monte Carlo Simulation

  • Kim, Jongsoon;Kwon, Soon-Hong;Chung, Sung-Won;Kwon, Soon-Goo;Park, Jong-Min;Choi, Won-Sik
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.87-94
    • /
    • 2013
  • Purpose: Pineapple is now the third most important tropical fruit in world production after banana and citrus. Phytosanitary irradiation is recognized as a promising alternative treatment to chemical fumigation. However, most of the phytosanitary irradiation studies have dealt with physiochemical properties and its efficacy. Accurate dose calculation is crucial for ensuring proper process control in phytosanitary irradiation. The objective of this study was to optimize phytosanitary irradiation treatment of pineapple in various radiation sources using Monte Carlo simulation. Methods: 3-D geometry and component densities of the pineapple, extracted from CT scan data, were entered into a radiation transport Monte Carlo code (MCNP5) to obtain simulated dose distribution. Radiation energy used for simulation were 2 MeV (low-energy) and 10 MeV (high-energy) for electron beams, 1.25 MeV for gamma-rays, and 5 MeV for X-rays. Results: For low-energy electron beam simulation, electrons penetrated up to 0.75 cm from the pineapple skin, which is good for controlling insect eggs laid just below the fruit surface. For high-energy electron beam simulation, electrons penetrated up to 4.5 cm and the irradiation area occupied 60.2% of the whole area at single-side irradiation and 90.6% at double-side irradiation. For a single-side only gamma- and X-ray source simulation, the entire pineapple was irradiated and dose uniformity ratios (Dmax/Dmin) were 2.23 and 2.19, respectively. Even though both sources had all greater penetrating capability, the X-ray treatment is safer and the gamma-ray treatment is more widely used due to their availability. Conclusions: These results are invaluable for optimizing phytosanitary irradiation treatment planning of pineapple.

Sensitivity and uncertainty quantification of neutronic integral data in the TRIGA Mark II research reactor

  • Makhloul, M.;Boukhal, H.;Chakir, E.;El Bardouni, T.;Lahdour, M.;Kaddour, M.;Ahmed, Abdulaziz;Arectout, A.;El Yaakoubi, H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.523-531
    • /
    • 2022
  • In order to study the sensitivity and the uncertainty of the Moroccan research reactor TRIGA Mark II, a model of this reactor has been developed in our ERSN laboratory for use with the N-Particle MCNP Monte Carlo transport codes (version 6). In this article, the sensitivities of the effective multiplication factor of this reactor are evaluated using the ENDF/B-VII.0, ENDF/B-VII.1 and JENDL-4.0 libraries and in 44 energy groups, for the cross sections of the fuel (U-235 and U-238) and the moderator (H-1 and O-16). However, the quantification of the uncertainty of the nuclear data is performed using the nuclear code NJOY99 for the generation and processing of covariance matrices. On the one hand, the highest uncertainty deviations, calculated using the ENDFB-VII.1 and JENDL4.0 evaluations, are 2275, 386 and 330 pcm respectively for the reactions U235(n, f), $ U_{235}(n\bar{\nu})$ and H1(n, γ). On the other hand, these differences are very small for the neutron reactions of O-16 and U-238. Regarding the neutron spectra, in CT-mid plane, they are very close for the three evaluations (ENDF/B-VII.0, ENDF/B-VII.1 and JENDL-4.0). These spectra present two peaks (thermal and fission) around the energies 0.05 eV and 1 MeV.

Enhancing Gamma-Neutron Shielding Effectiveness of Polyvinylidene Fluoride for Potent Applications in Nuclear Industries: A Study on the Impact of Tungsten Carbide, Trioxide, and Disulfide Using EpiXS, Phy-X/PSD, and MCNP5 Code

  • Ayman Abu Ghazal;Rawand Alakash;Zainab Aljumaili;Ahmed El-Sayed;Hamza Abdel-Rahman
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.184-196
    • /
    • 2023
  • Background: Radiation protection is crucial in various fields due to the harmful effects of radiation. Shielding is used to reduce radiation exposure, but gamma radiation poses challenges due to its high energy and penetration capabilities. Materials and Methods: This work investigates the radiation shielding properties of polyvinylidene fluoride (PVDF) samples containing different weight fraction of tungsten carbide (WC), tungsten trioxide (WO3), and tungsten disulfide (WS2). Parameters such as the mass attenuation coefficient (MAC), half-value layer (HVL), mean free path (MFP), effective atomic number (Zeff), and macroscopic effective removal cross-section for fast neutrons (ΣR) were calculated using the Phy-X/PSD software. EpiXS simulations were conducted for MAC validation. Results and Discussion: Increasing the weight fraction of the additives resulted in higher MAC values, indicating improved radiation shielding. PVDF-xWC showed the highest percentage increase in MAC values. MFP results indicated that PVDF-0.20WC has the lowest values, suggesting superior shielding properties compared to PVDF-0.20WO3 and PVDF-0.20WS2. PVDF-0.20WC also exhibited the highest Zeff values, while PVDF-0.20WS2 showed a slightly higher increase in Zeff at energies of 0.662 and 1.333 MeV. PVDF-0.20WC has demonstrated the highest ΣR value, indicating effective shielding against fast neutrons, while PVDF-0.20WS2 had the lowest ΣR value. The Monte Carlo N-Particle Transport version 5 (MCNP5) simulations showed that PVDF-xWC attenuates gamma radiation more than pure PVDF, significantly decreasing the dose equivalent rate. Conclusion: Overall, this research provides insights into the radiation shielding properties of PVDF mixtures, with PVDF-xWC showing the most promising results.

Dosimetry of the Low Fluence Fast Neutron Beams for Boron Neutron Capture Therapy (붕소-중성자 포획치료를 위한 미세 속중성자 선량 특성 연구)

  • Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Park, Hyun-Joo;Lee, Suk;Lee, Kyung-Hoo;Suh, So-Heigh;Kim, Mi-Sook;Cho, Chul-Koo;Yoo, Seong-Yul;Yu, Hyung-Jun;Gwak, Ho-Shin;Rhee, Chang-Hun
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.66-73
    • /
    • 2001
  • Purpose : For the research of Boron Neutron Capture Therapy (BNCT), fast neutrons generated from the MC-50 cyclotron with maximum energy of 34.4 MeV in Korea Cancer Center Hospital were moderated by 70 cm paraffin and then the dose characteristics were investigated. Using these results, we hope to establish the protocol about dose measurement of epi-thermal neutron, to make a basis of dose characteristic of epi-thermal neutron emitted from nuclear reactor, and to find feasibility about accelerator-based BNCT. Method and Materials : For measuring the absorbed dose and dose distribution of fast neutron beams, we used Unidos 10005 (PTW, Germany) electrometer and IC-17 (Far West, USA), IC-18, ElC-1 ion chambers manufactured by A-150 plastic and used IC-l7M ion chamber manufactured by magnesium for gamma dose. There chambers were flushed with tissue equivalent gas and argon gas and then the flow rate was S co per minute. Using Monte Carlo N-Particle (MCNP) code, transport program in mixed field with neutron, photon, electron, two dimensional dose and energy fluence distribution was calculated and there results were compared with measured results. Results : The absorbed dose of fast neutron beams was $6.47\times10^{-3}$ cGy per 1 MU at the 4 cm depth of the water phantom, which is assumed to be effective depth for BNCT. The magnitude of gamma contamination intermingled with fast neutron beams was $65.2{\pm}0.9\%$ at the same depth. In the dose distribution according to the depth of water, the neutron dose decreased linearly and the gamma dose decreased exponentially as the depth was deepened. The factor expressed energy level, $D_{20}/D_{10}$, of the total dose was 0.718. Conclusion : Through the direct measurement using the two ion chambers, which is made different wall materials, and computer calculation of isodose distribution using MCNP simulation method, we have found the dose characteristics of low fluence fast neutron beams. If the power supply and the target material, which generate high voltage and current, will be developed and gamma contamination was reduced by lead or bismuth, we think, it may be possible to accelerator-based BNCT.

  • PDF

RADIOLOGICAL CHARACTERISTICS OF DECOMMISSIONING WASTE FROM A CANDU REACTOR

  • Cho, Dong-Keun;Choi, Heui-Joo;Ahmed, Rizwan;Heo, Gyun-Young
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.583-592
    • /
    • 2011
  • The radiological characteristics for waste classification were assessed for neutron-activated decommissioning wastes from a CANDU reactor. The MCNP/ORIGEN2 code system was used for the source term analysis. The neutron flux and activation cross-section library for each structural component generated by MCNP simulation were used in the radionuclide buildup calculation in ORIGEN2. The specific activities of the relevant radionuclides in the activated metal waste were compared with the specified limits of the specific activities listed in the Korean standard and 10 CFR 61. The time-average full-core model of Wolsong Unit 1 was used as the neutron source for activation of in-core and ex-core structural components. The approximated levels of the neutron flux and cross-section, irradiated fuel composition, and a geometry simplification revealing good reliability in a previous study were used in the source term calculation as well. The results revealed the radioactivity, decay heat, hazard index, mass, and solid volume for the activated decommissioning waste to be $1.04{\times}10^{16}$ Bq, $2.09{\times}10^3$ W, $5.31{\times}10^{14}\;m^3$-water, $4.69{\times}10^5$ kg, and $7.38{\times}10^1\;m^3$, respectively. According to both Korean and US standards, the activated waste of the pressure tubes, calandria tubes, reactivity devices, and reactivity device supporters was greater than Class C, which should be disposed of in a deep geological disposal repository, whereas the side structural components were classified as low- and intermediate-level waste, which can be disposed of in a land disposal repository. Finally, this study confirmed that, regardless of the cooling time of the waste, 15% of the decommissioning waste cannot be disposed of in a land disposal repository. It is expected that the source terms and waste classification evaluated through this study can be widely used to establish a decommissioning/disposal strategy and fuel cycle analysis for CANDU reactors.