• Title/Summary/Keyword: MCL algorithm

Search Result 19, Processing Time 0.02 seconds

Clustering Gene Expression Data by MCL Algorithm (MCL 알고리즘을 사용한 유전자 발현 데이터 클러스터링)

  • Shon, Ho-Sun;Ryu, Keun-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.4
    • /
    • pp.27-33
    • /
    • 2008
  • The clustering of gene expression data is used to analyze the results of microarray studies. This clustering is one of the frequently used methods in understanding degrees of biological change and gene expression. In biological research, MCL algorithm is an algorithm that clusters nodes within a graph, and is quick and efficient. We have modified the existing MCL algorithm and applied it to microarray data. In applying the MCL algorithm we put forth a simulation that adjusts two factors, namely inflation and diagonal tent and converted them by making use of Markov matrix. Furthermore, in order to distinguish class more clearly in the modified MCL algorithm we took the average of each row and used it as a threshold. Therefore, the improved algorithm can increase accuracy better than the existing ones. In other words, in the actual experiment, it showed an average of 70% accuracy when compared with an existing class. We also compared the MCL algorithm with the self-organizing map(SOM) clustering, K-means clustering and hierarchical clustering (HC) algorithms. And the result showed that it showed better results than ones derived from hierarchical clustering and K-means method.

Investigating Binding Area of Protein Surface using MCL Algorithm (MCL 알고리즘을 이용한 단백질 표면의 바인딩 영역 분석 기법)

  • Jung, Kwang-Su;Yu, Ki-Jin;Chung, Yong-Je;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.14D no.7
    • /
    • pp.743-752
    • /
    • 2007
  • Proteins combine with other materials to achieve their function and have similar function if their active sites are similar. Thus we can infer the function of protein by identifying the binding area of proteins. This paper suggests the novel method to select binding area of protein using MCL (Markov Cluster) algorithm. We construct the distance matrix from surface residues distance on protein. Then this distance matrix is transformed to connectivity matrix for applying MCL process. We adopted Catalytic Site Atlas (CSA) data to evaluate the proposed method. In the experimental result using CSA data (94 selected single chain proteins), our algorithm detects the 91 (97%) binding area near by active site of each protein. We introduced a new geometrical features and this mainly contributes to reduce the time to analyze the protein by selecting the residues near by active site.

CLUSTERING DNA MICROARRAY DATA BY STOCHASTIC ALGORITHM

  • Shon, Ho-Sun;Kim, Sun-Shin;Wang, Ling;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.438-441
    • /
    • 2007
  • Recently, due to molecular biology and engineering technology, DNA microarray makes people watch thousands of genes and the state of variation from the tissue samples of living body. With DNA Microarray, it is possible to construct a genetic group that has similar expression patterns and grasp the progress and variation of gene. This paper practices Cluster Analysis which purposes the discovery of biological subgroup or class by using gene expression information. Hence, the purpose of this paper is to predict a new class which is unknown, open leukaemia data are used for the experiment, and MCL (Markov CLustering) algorithm is applied as an analysis method. The MCL algorithm is based on probability and graph flow theory. MCL simulates random walks on a graph using Markov matrices to determine the transition probabilities among nodes of the graph. If you look at closely to the method, first, MCL algorithm should be applied after getting the distance by using Euclidean distance, then inflation and diagonal factors which are tuning modulus should be tuned, and finally the threshold using the average of each column should be gotten to distinguish one class from another class. Our method has improved the accuracy through using the threshold, namely the average of each column. Our experimental result shows about 70% of accuracy in average compared to the class that is known before. Also, for the comparison evaluation to other algorithm, the proposed method compared to and analyzed SOM (Self-Organizing Map) clustering algorithm which is divided into neural network and hierarchical clustering. The method shows the better result when compared to hierarchical clustering. In further study, it should be studied whether there will be a similar result when the parameter of inflation gotten from our experiment is applied to other gene expression data. We are also trying to make a systematic method to improve the accuracy by regulating the factors mentioned above.

  • PDF

Localization on an Underwater Robot Using Monte Carlo Localization Algorithm (몬테카를로 위치추정 알고리즘을 이용한 수중로봇의 위치추정)

  • Kim, Tae-Gyun;Ko, Nak-Yong;Noh, Sung-Woo;Lee, Young-Pil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.288-295
    • /
    • 2011
  • The paper proposes a localization method of an underwater robot using Monte Carlo Localization(MCL) approach. Localization is one of the fundamental basics for autonomous navigation of an underwater robot. The proposed method resolves the problem of accumulation of position error which is fatal to dead reckoning method. It deals with uncertainty of the robot motion and uncertainty of sensor data in probabilistic approach. Especially, it can model the nonlinear motion transition and non Gaussian probabilistic sensor characteristics. In the paper, motion model is described using Euler angles to utilize the MCL algorithm for position estimation of an underwater robot. Motion model and sensor model are implemented and the performance of the proposed method is verified through simulation.

Moderately clipped LASSO for the high-dimensional generalized linear model

  • Lee, Sangin;Ku, Boncho;Kown, Sunghoon
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.4
    • /
    • pp.445-458
    • /
    • 2020
  • The least absolute shrinkage and selection operator (LASSO) is a popular method for a high-dimensional regression model. LASSO has high prediction accuracy; however, it also selects many irrelevant variables. In this paper, we consider the moderately clipped LASSO (MCL) for the high-dimensional generalized linear model which is a hybrid method of the LASSO and minimax concave penalty (MCP). The MCL preserves advantages of the LASSO and MCP since it shows high prediction accuracy and successfully selects relevant variables. We prove that the MCL achieves the oracle property under some regularity conditions, even when the number of parameters is larger than the sample size. An efficient algorithm is also provided. Various numerical studies confirm that the MCL can be a better alternative to other competitors.

Development of Sensor Device and Probability-based Algorithm for Braille-block Tracking (확률론에 기반한 점자블록 추종 알고리즘 및 센서장치의 개발)

  • Roh, Chi-Won;Lee, Sung-Ha;Kang, Sung-Chul;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.249-255
    • /
    • 2007
  • Under the situation of a fire, it is difficult for a rescue robot to use sensors such as vision sensor, ultrasonic sensor or laser distance sensor because of diffusion, refraction or block of light and sound by dense smoke. But, braille blocks that are installed for the visaully impaired at public places such as subway stations can be used as a map for autonomous mobile robot's localization and navigation. In this paper, we developed a laser sensor stan device which can detect braille blcoks in spite of dense smoke and integrated the device to the robot developed to carry out rescue mission in various hazardous disaster areas at KIST. We implemented MCL algorithm for robot's attitude estimation according to the scanned data and transformed a braille block map to a topological map and designed a nonlinear path tracking controller for autonomous navigation. From various simulations and experiments, we could verify that the developed laser sensor device and the proposed localization method are effective to autonomous tracking of braille blocks and the autonomous navigation robot system can be used for rescue under fire.

Localization Algorithm in Wireless Sensor Networks Using a Directional Antenna (지향성 안테나를 이용한 무선 센서 네트워크에서의 위치 인식 알고리즘)

  • Hong, Sung-Hwa;Kang, Bong-Jik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.111-118
    • /
    • 2010
  • The proposed algorithm to be explained in this paper is the localization technique using directional antenna. Here, it is assumed that anchor node has the ability to transfer the azimuth of each sector using GPS modules, sector antenna, and the digital compass. In the conventional sensor network, the majority of localization algorithms were capable of estimating the position information of the sensor node by knowing at least 3 position values of anchor nodes. However, this paper has proposed localization algorithm that estimates the position of nodes to continuously move with sensor nodes and traveling nodes. The proposed localization mechanisms have been simulated in the Matlab. The simulation results show that our scheme performed better than other mechanisms (e.g. MCL, DV-distance).

Development of Clustering Algorithm based on Massive Network Compression (대용량 네트워크 압축 기반 클러스터링 알고리즘 개발)

  • Seo, Dongmin;Yu, Seok Jong;Lee, Min-Ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.53-54
    • /
    • 2016
  • 빅데이터란 대용량 데이터 활용 및 분석을 통해 가치 있는 정보를 추출하고, 이를 바탕으로 대응 방안 도출 또는 변화를 예측하는 기술을 의미한다. 그리고 빅데이터 분석에 활용되는 데이터인 페이스북과 같은 소셜 데이터, 유전자 발현과 같은 바이오 데이터, 항공망과 같은 지리정보 데이터들은 대용량 네트워크로 구성되어 있다. 네트워크 클러스터링은 서로 유사한 특성을 갖는 네트워크 내의 데이터들을 동일한 클러스터로 묶는 기법으로 네트워크 데이터를 분석하고 그 특성을 파악하는데 폭넓게 사용된다. 최근 빅데이터가 다양한 분야에서 활용되면서 방대한 양의 네트워크 데이터가 생성되고 있고, 이에 따라서 대용량 네트워크 데이터를 효율적으로 처리하는 클러스터링 기법의 중요성이 증가하고 있다. MCL(Markov Clustering) 알고리즘은 플로우 기반 무감독(unsupervised) 클러스터링 알고리즘으로 확장성이 우수해 다양한 분야에서 활용되고 있다. 하지만, MCL은 대용량 네트워크에 대해서는 많은 클러스터링 연산을 요구하며 너무 많은 클러스터를 생성하는 문제를 갖는다. 본 논문에서는 네트워크 압축을 기반으로 한 클러스터링 알고리즘을 제안함으로써 MCL보다 클러스터링 속도와 정확도를 향상시켰다. 또한, 희소행렬을 효율적으로 저장하는 CSC(Compressed Sparse Column) 자료구조와 MapReduce 기법을 제안한 클러스터링 알고리즘에 적용함으로써 대용량 네트워크에 대한 클러스터링 속도를 향상시켰다.

  • PDF

Indoor Localization of a Mobile Robot Using External Sensor (외부 센서를 이용한 이동 로봇 실내 위치 추정)

  • Ko, Nak-Yong;Kim, Tae-Gyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.420-427
    • /
    • 2010
  • This paper describes a localization method based on Monte Carlo Localization approach for a mobile robot. The method uses range data which are measured from ultrasound transmitting beacons whose locations are given a priori. The ultrasound receiver on-board a robot detects the range from the beacons. The method requires several beacons, theoretically over three. The method proposes a sensor model for the range sensing based on statistical analysis of the sensor output. The experiment uses commercialized beacons and detector which are used for trilateration localization. The performance of the proposed method is verified through real implementation. Especially, it is shown that the performance of the localization degrades as the sensor update rate decreases compared with the MCL algorithm update rate. Though the method requires exact location of the beacons, it doesn't require geometrical map information of the environment. Also, it is applicable to estimation of the location of both the beacons and robot simultaneously.

Bayesian Survival Analysis of High-Dimensional Microarray Data for Mantle Cell Lymphoma Patients

  • Moslemi, Azam;Mahjub, Hossein;Saidijam, Massoud;Poorolajal, Jalal;Soltanian, Ali Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.95-100
    • /
    • 2016
  • Background: Survival time of lymphoma patients can be estimated with the help of microarray technology. In this study, with the use of iterative Bayesian Model Averaging (BMA) method, survival time of Mantle Cell Lymphoma patients (MCL) was estimated and in reference to the findings, patients were divided into two high-risk and low-risk groups. Materials and Methods: In this study, gene expression data of MCL patients were used in order to select a subset of genes for survival analysis with microarray data, using the iterative BMA method. To evaluate the performance of the method, patients were divided into high-risk and low-risk based on their scores. Performance prediction was investigated using the log-rank test. The bioconductor package "iterativeBMAsurv" was applied with R statistical software for classification and survival analysis. Results: In this study, 25 genes associated with survival for MCL patients were identified across 132 selected models. The maximum likelihood estimate coefficients of the selected genes and the posterior probabilities of the selected models were obtained from training data. Using this method, patients could be separated into high-risk and low-risk groups with high significance (p<0.001). Conclusions: The iterative BMA algorithm has high precision and ability for survival analysis. This method is capable of identifying a few predictive variables associated with survival, among many variables in a set of microarray data. Therefore, it can be used as a low-cost diagnostic tool in clinical research.