• Title/Summary/Keyword: MCF7 cell

Search Result 736, Processing Time 0.024 seconds

Inhibition of Cell Growth by Anoikis in Various Human Cancer Cell Lines Treated with an Extract of Smilax china L. (토복령 추출물이 처리된 여러 종류의 사람 암세포주에서 아노이키스 세포 사멸에 의한 세포 성장의 억제)

  • Kim, Min-Jae;Kim, Hyeon-Ji;Kim, Moo-Gyeong;Lee, Sung-Ho;Jeon, Byeong-Gyun
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.266-279
    • /
    • 2021
  • The present study examined the cytotoxic effects of a Smilax china L. extract (SCLE) in human cancer (A-549, MCF-7, MDA-MB-231, U87-MG, AGS, MKN-74, and SNU-601) and normal MRC-5 fibroblasts, as well as in mesenchymal stem cells derived from dental tissue (DSC). The 50% inhibitory concentration (IC50) values for SCLE were significantly (p<0.05) lower in the cancer cell lines (A-549, MCF-7, MDA-MB-231, U87-MG, AGS, MKN-74 and SNU-601) than in the MRC-5 and DSC cells. Cell growth was significantly (p<0.05) more inhibited in the cancer cell lines treated with 200 ㎍/ml SCLE than in the normal MRC-5 and DSC, and anoikis-like floating cell morphology was observed in the SCLE-treated cancer cells. The cells detached by SCLE treatment were retrieved daily and assayed for viability and telomerase activity. Cells retrieved at 4 days showed significantly decreased viability and telomerase activity (p<0.05), as well as apoptosis-like abnormal morphology, when compared to cells retrieved in the previous 3 days. The ratio of apoptosis and cells in the G1 phase was significantly (p<0.05) increased in the A-549, AGS, and MCF-7 cancer cells treated with SCLE for 4 days compared to untreated controls. However, after SCLE treatment, cell adhesion was not increased by application of an inhibitor of the associated protein kinase (ROCK) that mainly contributes to the increase in cell attachment. This suggests that the cellular detachment by SCLE is probably controlled by a Rho-independent mechanism(s). These observations indicate that SCLE readily induces anoikis in cancer cells and could serve as a potent agent for cancer chemotherapy.

Phorbol Ester TPA Modulates Chemoresistance in the Drug Sensitive Breast Cancer Cell Line MCF-7 by Inducing Expression of Drug Efflux Transporter ABCG2

  • Kalalinia, Fatemeh;Elahian, Fatemeh;Hassani, Mitra;Kasaeeian, Jamal;Behravan, Javad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2979-2984
    • /
    • 2012
  • Recent studies have indicated a link between levels of cyclooxygenase-2 (COX-2) and development of the multidrug resistance (MDR) phenotype. The ATP-binding cassette sub-family G member 2 (ABCG2) is a major MDR-related transporter protein that is frequently overexpressed in cancer patients. In this study, we aimed to evaluate any positive correlation between COX-2 and ABCG2 gene expression using the COX-2 inducer 12-O-tetradecanoylphorbol-13-acetate (TPA) in human breast cancer cell lines. ABCG2 mRNA and protein expression was studied using real-time RT-PCR and flow cytometry, respectively. A significant increase of COX-2 mRNA expression (up to 11-fold by 4 h) was induced by TPA in MDA-MB-231 cells, this induction effect being lower in MCF-7 cells. TPA caused a considerable increase up to 9-fold in ABCG2 mRNA expression in parental MCF-7 cells, while it caused a small enhancement in ABCG2 expression up to 67 % by 4 h followed by a time-dependent decrease in ABCG2 mRNA expression in MDA-MB-231 cells. TPA treatment resulted in a slight increase of ABCG2 protein expression in MCF-7 cells, while a time-dependent decrease in ABCG2 protein expression was occurred in MDA-MB-231 cells. In conclusion, based on the observed effects of TPA in MDA-Mb-231 cells, it is proposed that TPA up-regulates ABCG2 expression in the drug sensitive MCF-7 breast cancer cell line through COX-2 unrelated pathways.

Ganoderma lucidum extract induces cell cycle arrest and Apoptosis in MCF-7 human breast cancer cell

  • Cho, Sung-Dae;Park, Ki-Soo;Hong, In-Sun;Yang, Se-Ran;Jung, Ji-Won;Lee, Young-Soon;Kang, Kyung-Sun
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.134-134
    • /
    • 2002
  • Although the pharmacology and clinical application of water extracts of Ganoderma lucidum have been extensively documented, little is known regarding its alcohol extract. In the present study, the anti-tumor effect of an alcohol extract of Ganoderma lucidum was investigated using MCF-7 cells.(omitted)

  • PDF

Cytotoxic Lactones from the Pericarps of Litsea japonica

  • Ngo, Quynh-Mai Thi;Cao, Thao Quyen;Woo, Mi Hee;Min, Byung Sun
    • Natural Product Sciences
    • /
    • v.25 no.1
    • /
    • pp.23-27
    • /
    • 2019
  • From the pericarps of Litsea japonica (Thunb.) Jussieu, eighteen butanolide derivatives (1 - 18) were evaluated for their cytotoxic activity against HeLa, HL-60, and MCF-7 cells. Compounds 1-9 with 2-alkylidene-3-hydroxy-4-methylbutanolides structure exhibited cytotoxic activities against cancer-cell lines. Among them, compound 8 (litsenolide $D_2$) exhibited the most potent cytotoxicity against the tested cell lines, including HeLa, HL-60, and MCF-7, with $IC_{50}$ values of $17.6{\pm}1.3$, $4.2{\pm}0.2$, and $12.8{\pm}0.0{\mu}M$, respectively. Compound 8 induced apoptosis in a dose-dependent manner. Annexin V/Propidium Iodide (PI) double staining confirmed that 8 effectively induced apoptosis in MCF-7 cells. To the best of our knowledge, we have reported cytotoxic activity of butanolides from L. japonica against these cancer-cell lines for the first time.

사람 유래의 MCF10A, Chang liver및 HaCaT 세포의 소핵형성 및 세포형질전환에 미치는 2,3,7,8-Tetrachlorodibenzo-p-dioxin의 영향

  • 엄미옥;박미영;김종원;박미선;한의식;오혜영;정해관
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.2
    • /
    • pp.91-98
    • /
    • 2004
  • Although 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD) is a powerful carcinogen in several species, limited model system exist to study carcinogenicity of this compound at cellular level. To enhance our under-standing of carcinogenicity of TCDD at cellular level, we investigated micronucleus (MN) frequency as a index of genetic toxicity and whether TCDD can transform the human cells in culture. Normal human cell lines, skin keratinocyte HaCaT, Chang liver and breast MCF10A cells were used. TCDD did not affect the cell viability of the Chang liver, HaCaT and MCF10A cells. The frequency of micronucleus was increased after treatment of TCDD for 24hr in Chang liver and HaCaT cells, but not changed in MCF10A cells. And we observed putative transformed cells in Chang liver cells exposed to 1 $\mu$M TCDD for 2 weeks. The putative transformed cells were also observed in HaCaT cells with subsequent exposure to TCDD (0.1, 1, 10, 100 nM) for 2 weeks after initial exposure to MNNG, but not observed in MCF10A cells. Collectively, these results indicate that the ability of TCDD to induce micronuclei may be involved in cellular transformation of Chang liver and HaCaT cells. Our putative TCDD-transformed cells of Chang liver and HaCaT are expected to provide a clue to the elucidation of TCDD-induced transformation pathway.

  • PDF

Elevated folic acid results in contrasting cancer cell line growth with implications for mandatory folic acid fortification

  • Yates, Zoe;Lucock, Mark;Veysey, Martin;Choi, Jeong-hwa
    • Journal of Nutrition and Health
    • /
    • v.49 no.2
    • /
    • pp.72-79
    • /
    • 2016
  • Purpose: The initiation of mandatory folic acid fortification using pteroylmonoglutamic acid (PteGlu) has reduced the rate of congenital malformations. However, it also appears to be responsible for several adverse effects, including increased cancer incidence. This may be related to physicho-chemical characteristics of PteGlu. This study examines the potential effect of high concentrations of PteGlu on a population subjected to mandatory folic acid fortification using an in vitro model. Methods: Caco-2 (colorectal cancer) and MCF7 (breast cancer) cell lines were cultured at 6 different PteGlu concentrations (0, 0.1, 1, 50, 250, and $500{\mu}g/ml$) for 6 days. Cell growth was determined using thiazolyl blue tetrazolium bromide assay. The genotype of dihydrofolate reductase 19bp deletion/insertion (DHFR 19-del) was also scored in cell lines using a restriction fragment length polymorphism technique to examine whether genetic variations may factor in cell proliferation. Results: PteGlu exhibited differential growth promoting properties between cell lines. Caco-2 cells did not show a significant growth difference at low concentrations compared to control, however, at higher concentrations, the growth showed a contrasting trend in the early experimental period, while MCF7 showed enhanced cell growth at all concentrations. The DHFR 19-del genotype differed in the two cell lines. Conclusions: Altered response to PteGlu by Caco-2 and MCF7 may reflect a tissue specific disease aetiology or genotype specific differential enzyme activity, for example by DHFR, to critical levels of PteGlu. As folic acid fortification is a blanket intervention, and DHFR and other enzyme activities vary between individuals, PteGlu intake may have an as yet undefined effect on health. These findings may be relevant when considering mandatory folic acid fortification for disease prevention.

Screening for in vitro Cytotoxic Activity of Seaweed, Sargassum sp. Against Hep-2 and MCF-7 Cancer Cell Lines

  • Mary, J. Stella;Vinotha, P.;Pradeep, Andrew M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6073-6076
    • /
    • 2012
  • Discovery of anticancer drugs that kill or disable tumor cells in the presence of normal cells without undue toxicity is a potential challenge for therapeutic care. Several papers in the literature have emphasized the potential implications of marine products such as seaweeds which exhibit antitumor activity. Study attempts to screen the antitumor effect of Sargassum sp, against chosen cell lines such as MCF-7 (Breast cancer) and Hep-2 (Liver Cancer). Ethanol extract of Sargassum sp. was concentrated using a Soxhlet apparatus and dissolved in DMSO. In vitro cytotoxic activity of Sargassum sp at various concentrations ($100{\mu}g/ml-300{\mu}g/ml$) screened for antitumor effect against the chosen cell lines using MTT assay (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole). The study documented that the percentage of cell viability has been reduced with increased concentration, as evidenced by cell death. Sargassum sp extract shows potential cytotoxic activity ($P{\leq}0.05$) with $IC_{50}$ of $200{\mu}g/ml$ and $250{\mu}g/ml$ against Hep-2 and MCF-7 cell lines respectively. The ethanol fraction of Sargassum sp induced cell shrinkage, cell membrane blebbing and formation of apoptotic bodies with evidence of bioactive components as profound influencing factors for anti-tumor effects. Further research need to be explored for the successful application of Sargassum sp as a potent therapeutic tool against cancer.

Toosendan Fructus Induces Apoptotic Cell Death in MCF-7 Cell, Via the Inhibition of Bcl-2 Expression (천련자 메탄올 추출물이 Bcl-2 발현 억제를 통해 유방암 세포의 자멸사에 미치는 영향)

  • Yoon, Woo-Kyeong;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.21 no.3
    • /
    • pp.18-33
    • /
    • 2008
  • Purpose: The research is to investigate the effect of TFE on apoptosis of human-derived breast cancer cells, to find out the relationship with apoptosis. Methods: Human-derived breast adenocarcinoma cell line, MCF-7 cells were treated by TFE with various concentration. The inducement effect of TFE on cell apoptosis was observed with MTT assay and the relationship between the treatment and apoptosis was investigated with FACS analysis, TUNEL assay and DNA laddering assay and the change in the protein levels of PARP and caspase-3 activities were also observed. The release of cytochrome-c was observed to find out the pathway of apoptosis induced by TFE. Results: The cell apoptosis was significantly induced in MCF-7 cells treated with TFE in concentration-dependent and time-dependent manner. It was verified by FACS analysis, TUNEL assay, DNA laddering assay that cell-death was caused not by necrosis but by apoptosis. The activity of PARP and caspase were increased concentration-dependently. The release of cytocrome-c was decreased in proportion to the concentration of the fruit extract. It therefore demonstrated that mitochondria were involved in apoptosis induced by TFE. The appearance of Bcl-2 protein was decreased concentration-dependently. Conclusion: The treatment by TFE induced apoptosis of human breast adenocarcinoma cell line, MCF-7. It seems likely that cell-death was caused by apoptosis and mitochondria were involved in it. The mechanism of protein change causing apoptosis seems related to the inhibition of Bcl-2 protein, the promotion of inversion from cytochrome-c into cytosol, the activation of caspase and the promotion of PARP cleavage.

  • PDF

Cell-type-specific Gene Expression Patterns in Human Carcinoma Cells followed by Irradiation (방사선에 의한 암세포주 특이적 유전자 발현 양상)

  • Park Ji-Yoon;Kim Jin-Kyu;Chai Young Gyu
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.2 s.58
    • /
    • pp.152-156
    • /
    • 2005
  • Ionizing radiation is a well- known therapy factor for human carcinoma cells. Genotoxic stress mediates cell cycle control, transcription and cellular signaling. In this work, we have used a microarray hybridization approach to characterize the cell type-specific transcriptional response of human carcinoma MCF-7 and HeLa cell line to $\gamma-radiation$, such as 4Gy 4hr. We found that exposure to $\gamma-ray$ alters by at least a $log_2$ factor of 1.0 the expression of known genes. Of the 27 genes affected by irradiation, 11 are down- regulated in MCF-7 cells and 2 genes induced by radiation,15 are repressed in HeLa cells. Many genes were involved in known damage- response pathways for cell cycling, transcription factor and cellular signaling response. However, in MCF-7 cells, we observed gene expression pattern in chromatin, apoptosis, stress, differentiation, cytokine, metabolism, ribosome and calcium. In HeLa cells, it showed clearly the expression changes in adhesion and migration, lysosome, brain, genome instability and translation. These insights reveal new therapy directions for studying the human carcinoma cell response to radiation.

In Vitro Cytotoxic Activity of Seed Oil of Fenugreek Against Various Cancer Cell Lines

  • Al-Oqail, Mai Mohammad;Farshori, Nida Nayyar;Al-Sheddi, Ebtesam Saad;Musarrat, Javed;Al-Khedhairy, Abdulaziz Ali;Siddiqui, Maqsood Ahmed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1829-1832
    • /
    • 2013
  • In the present study, investigations were carried out to screen the anticancer activities of fenugreek seed oil against cancer cell lines (HEp-2, MCF-7, WISH cells), and a normal cell line (Vero cells). Cytotoxicity was assessed with MTT and NRU assays, and cellular morphological alterations were studied using phase contrast light microscopy. All cells were exposed toi 10-1000 ${\mu}g/ml$ of fenugreek seed oil for 24 h. The results show that fenugreek seed oil significantly reduced the cell viability, and altered the cellular morphology in a dose dependent manner. Among the cell lines, HEp-2 cells showed the highest decrease in cell viability, followed by MCF-7, WISH, and Vero cells by MTT and NRU assays. Cell viability at 1000 ${\mu}g/ml$ was recorded as 55% in HEp-2 cells, 67% in MCF-7 cells, 75% in WISH cells, and 86% in Vero cells. The present study provides preliminary screening data for fenugreek seed oil pointing to potent cytotoxicity against cancer cells.