• Title/Summary/Keyword: MCF7

Search Result 941, Processing Time 0.028 seconds

Differential Effects of Resveratrol and its Oligomers Isolated from Seeds of Paeonia lactiflora (Peony) on Proliferation of MCF-7 and ROS 17/2.8 Cells

  • Kim, Hyo-Jin;Lee, Won-Jung;Park, Yun-Hee;Cho, Sung-Hee;Park, Sang-Won
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.4
    • /
    • pp.356-364
    • /
    • 2003
  • A methanol extract from seeds of Paeonia lactiflora (Paeoniaceae, peony) was found to possess different antiproliferative activities against four different human cancer cell lines: Hela, MCF-7, HepG2 and HT-29. Furthermore, five different methanol (20, 40, 60, 80 and 100 % MeOH) fractions obtained by fractionation of the methanol extract of the seeds on a Diaion HP-20 column exhibited differential antiproliferative effects against the above four cancer cell lines. Among five fractions, the 60 % MeOH fraction showed relatively lower antiproliferative activity on MCF-7 estrogen-sensitive breast cancer cell than the other cancer cell lines. Systematic separation of 60% the MeOH fraction by silica gel and Sephadex LH-20 columns led to the isolation of four known stilbenes, trans-resveratrol (1), trans-(+)- $\varepsilon$ -viniferin (2), gnetin H (3) and suffruticosol B (4). The four stilbenes (1∼4) exerted differential biphasic effects on cell proliferation of MCF-7 cells in a similar manner as genistein, a soybean isoflavone used as a positive reference, in the concentration range from 1.0 to 200 $\mu$M. Three stilbenes (1 ∼ 3) weakly stimulated the proliferation of MCF -7 cells at doses below 10 JIM. However, strong antiproliferative effects on MCF-7 cell were exerted by extract 1 at a dose of 200 JIM, and by 2 and 3 at doses above 25 $\mu$M. In contrast, 4 inhibited the proliferation of MCF-7 cell at a dose below 25 $\mu$M, but stimulated cell proliferation at concentrations of 50 and 100 $\mu$M. All four stilbenes (1∼4) stimulated the proliferation of ROS 17/2.8 osteoblast-like cells in the range of 10$^{-10}$ ∼10$^{-1}$ $\mu$M. Compound 1 exhibited especially potent proliferative activity, although its activity was weaker than that of genistein. Additionally, three resveratrol oligomers (2∼4) also exhibited concentration-dependently moderate proliferative activity, but less than that of 1. These results suggest that resveratrol, and its dimer and trimers from the seeds of Paeonia lactiflora may act as a phytoestrogen, but in a somewhat different manner from that of genistein.

Apoptosis of MCF7 Cells Treated with PKC Inhibitors and Daunorubicin

  • Park, Won-Chul;Son, Joo-Young;Chung, Sook-Hyun;An, Woon-Gun
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.2
    • /
    • pp.128-132
    • /
    • 2002
  • The present study was performed to observe the role of protein kinase C (PKC) inhibitors (H-7, staurosporine) and daunorubicin in the cell death process of MCF7 cells; and examined whether or not the type of induced cell death was apoptosis. The usefulness of the combined therapy of PKC inhibitors and daunorubicin to improve the adverse effect of daunorubicin was also investigated. Cell death was induced by treatment with PKC inhibitors or daunorubicin. Characteristic morphologic features of cell shrinkage, chromatic condensation, and cytoplasmic vacuolization were observed. These treatments also stimulated the cleavage of poly-(ADP-ribose) polymerase (PARP), an early event in apoptosis. With slight differences in the percentage of apoptosis-induced cells, staurosporine, H-7 and daunorubicin effectively induced apoptosis in MCF7 cells. Furthermore, combined treatment of PKC inhibitors and daunorubicin significantly drove the cells into an apoptotic state. Hence, our results revealed the possible therapeutic value of combined therapy for the prevention of drug resistance and adverse side effects.

Anticarcinogenic Activity of a Novel Anthraquinone Derivative DHAQ-97: Induction of Apoptosis in Human Breast Cancer Cell Line MCF-7 (새로운 Anthraquinone 유도체, DHAQ-97의 항암작용: 아폽토시스에 의한 인체 유방암세포 사멸 유도)

  • 허연진;김정환;장정희;안병준;서영준
    • Environmental Mutagens and Carcinogens
    • /
    • v.20 no.1
    • /
    • pp.14-20
    • /
    • 2000
  • DHAQ-97, (2-(3-[p-bis(2-chloroethyl)aminophenyl]-2 formylaminopropanoyloxy) methy1-1,4-dihy-droxy-9,10-anthraquinone), is a novel anthraquinone derivative synthesized for use as an anti-neoplastic agent. In the present study, we have evaluated the selective cytotoxicity of DHAQ-97 by comparing its effects on viability and proliferation of human breast cancer cell line (NCF-7) versus normal immortalized breast epithelial cell line (MCF-10A). Thus, DHAQ-97 reduced both viability and proliferation of MCF-7 cells to a much greater extent than did for MCF-10A cells. The growth inhibitory and anti-proliferative properties of DHAQ-97 appear to be attributable to its ability to induce apoptosis as revealed by positive staining after in 냐셔 nick-end labeling (TUNEL), cleavage of poly(ADP-ribose)polymerase, release of mitochondrial cytochrome c into cytoplasm, and increased expression of pro-apoptotic Bax protein. Recent studies have indicated possible involvement of the ubiquitous eukaryotic transcription factor, NF-kappa B (NF-kB) in the regulation of apoptotic cell death. In line induced cytotoxicity in cultured MCF-7 cells. Furthermore, mild activation of NF-kB, as determined by its increased DNA binding capability, was observed 30 min after treatment with 10$\mu\textrm{m}$ DHAQ-97. Taken together, the above findings suggest that DHAQ-97 exerts selective cytotoxicity towards cancer cells through induction of apoptosis, which appears to be regulated by NF-kB.

DNA Damage and Micronuclei Induced by Di (2-ethylhexyl) phthalate in Human Breast Carcinoma MCF-7 cells (Di(2-ethylhexyl) phthalate에 의해 유도된 DNA손상과 소핵 형성)

  • 김종원;한의식;박미선;엄미옥;김인숙;전혜승;정해관;심웅섭;오혜영
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.1
    • /
    • pp.34-43
    • /
    • 2001
  • Di-2-ethylhexyl phthalate (DEHP) is the most commonly used phthalate ester in polyvinyl chloride formulations including food packing and storage of human blood. DEHP is a well known as non-genotoxic carcinogen and endocrine disrupting chemical (EDC). DEHP have shown all negative results in ICH-guildeline recommended standard genotoxicity test battery. In this study, to assess the clastogenic and DNA damaging effect in human-derived tissue specific cells, DEHP was treated in human derived MCE-7 cells, HepG2 cells, LNCap cells, BeWo cells, MCE-10A cells, and female peripheral blood cells using micronucleus assay and in human breast carcinoma MCF-7 cells up to $1.28$\times$10^{-2}$ M using Comet assay. The in vitro micronucleus assay is a mutagenicity test system for the detection of chemicals which induce the formation of small membrane bound DNA fragment i.e. micronuclei in the cytoplasm of interphase cells, originated from clastogenic and/or aneugenic mechanism. The single cell gel electrophoresis assay (Comet assay) is used to detect DNA strand-breaks and alkaline labile site. In our results, DEHP increased significantly and/or dose-depentently and time-dependently micronucleus frequency at the 6 and 24 hr without metabolic activation system only in MCE-7 cells. DEHP treated with 2 hrs in MCF-7 cells using Comet assay induced DNA damage dose-depentantly.

  • PDF

Mural folliculitis and alopecia caused by infection with malignant catarrhal fever virus in goat (Capra hircus) (Malignant catarrhal fever virus 감염과 관련된 goat (Capra hircus)의 mural folliculitis와 alopecia)

  • Kim, Ok-Jin;Crawford, Timothy B.
    • Korean Journal of Veterinary Pathology
    • /
    • v.7 no.1
    • /
    • pp.5-9
    • /
    • 2003
  • Malignant catarrhal fever (MCF) is a systemic disease of ruminants caused by a gamma herpesvirus, ovine herpesvirus 2 (OvHV-2). Four 1-year old goats (Capra hircus), which were infected with MCF virus, OvHV-2, by being housed together with MCF virus-infected seep, were referred with a I-month history of chronic dermatitis. On the other hand, MCF virus-negative goats, which were isolated for negative control, had not those kinds of skin problems. Examination of the affected goats revealed generalized alopecia, patchy erythema, and superficial erosions with histologic evidence of mural folliculitis. Fungal culture tests and external parasite tests with the scraping skin samples were negative. However, polymerase chain reaction revealed the existence of MCF virus DNAs in the lesion. These results suggested that MCF virus may induce mural folliculitis and alopecia in goat.

  • PDF

Phytochemicals from Goniothalamus griffithii Induce Human Cancer Cell Apoptosis

  • Banjerdpongchai, Ratana;Khaw-on, Patompong;Pompimon, Wialrt
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3281-3287
    • /
    • 2016
  • Bioactive compounds extracted from leaves and twigs of Goniothalamus griffithii include pinocembrin (PCN) and goniothalamin (GTN). The objectives of this study were to investigate the cytotoxic activities of PCN and GTN and their influence on molecular signaling for cell death in several human cancer cell lines compared to normal murine fibroblast NIH3T3 cells. GTN exhibited the most potent cytotoxicity against MCF-7 > HeLa > HepG2 > NIH3T3 cells with $IC_{50}$ values of 7.33, 14.8, 37.1 and $65.4{\mu}M$, respectively, whereas PCN was cytotoxic only to HepG2 cells with $IC_{50}$ values of ${\sim}80{\mu}M$. Apoptotic cell death was confirmed by staining the cells with annexin V-FITC and propidium iodide (PI) employing flow cytometry. Apoptosis was shown by externalization of phosphatidylserine in goniothalamin-treated MCF-7 cells in a dose response manner. Positive PI-stained cells with the typical morphology of apoptotic cells were increased dose-dependently. Furthermore, reduction of mitochondrial transmembrane potential was found in goniothalamin-treated MCF-7, HepG2 and HeLa cells. GTN treatment in MCF-7 increased caspase-3, -8 and -9 activities while GTN-induced HeLa cells showed an increase of both caspase-3 and -9 activities. But an increased caspase-8 activity was demonstrated in GTN- and PCN-treated MCF-7 and HepG2 cells, respectively. Taken together, GTN- and PCN-induced human cancer cell apoptosis was through different molecular mechanisms or signaling pathways, which might be due to different machineries in different types of cancer cells, as evidenced by the compound-modulated caspase activities in both intrinsic and/or extrinsic pathways.

15d-PGJ2 Induces Apoptosis of MCF-7 and MDA-MB-231 Cells via Increased Intracellular Calcium and Activation of Caspases, Independent of ERα and ERβ

  • Muhammad, Siti Nur Hasyila;Mokhtar, Noor Fatmawati;Yaacob, Nik Soriani
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3223-3228
    • /
    • 2016
  • Reports indicate that 15-deoxy-delta-12,14-prostaglandin-J2 (15d-PGJ2) has anticancer activities, but its mechanisms of action have yet to be fully elucidated. We therefore investigated the effects of 15d-PGJ2 on the human breast cancer cell lines, MCF-7 (estrogen receptor $ER{\alpha}+/ER{\beta}+$) and MDA-MB-231 ($ER{\alpha}-/ER{\beta}+$). Cellular proliferation and cytotoxicity were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays while apoptosis was determined by fluorescence microscopy and flow cytometry using annexin V-propidium iodide (PI) staining. ER expression was determined by Western blotting. Intracellular calcium was stained with Fluo-4 AM while intracellular caspase activities were detected with Caspase-$FLICA(R)$ and measured by flow cytometry. We showed that 15d-PGJ2 caused a significant increase in apoptosis in MCF-7 and MDA-MB-231 cells. $ER{\alpha}$ protein expression was reduced in treated MCF-7 cells but pre-incubation with the $ER{\alpha}$ inhibitor' ICI 182 780' did not affect the percentage of apoptotic cells. The expression of $ER{\beta}$ was unchanged in both cell lines. In addition, 15d-PGJ2 increased intracellular calcium ($Ca^{2+}$) staining and caspase 8, 9 and 3/7 activities. We therefore conclude that 15d-PGJ2 induces caspase-dependent apoptosis that is associated with an influx of intracellular $Ca^{2+}$ with no involvement of ER signaling.

Antitumoral Compound , MCH-201 , an Effector on Proliferation and Morphology of Human Breast Tumor Cell Line, MCF-7 (인체유암세포주 MCF-7의 형태변화와 증식에 영향을 주는 항암활성물질, MCH-201)

  • Kim, Hang-Sub;Kim, Se-Eun;Kim, Young-Ho;Lee, Sung-Woo;Oh, Goo-Taeg;Kim, Hwan-Mook;Lee, Jung-Joon
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.316-321
    • /
    • 1993
  • MCH-201 was isolated from the mycelium of Streptomyces sp. Ba16 as a potent effector on proliferation and morphology of human breast tumor cell line, MCF-7. Morphological change could be observed at concentration between 2.5${\mu}$g/ml and 250pg/ml and showed cytotoxic effect at the concentration of more than 5${\mu}$g/ml. This compound also showed inhibitory effect on DNA synthesis of hepatoma cells, Hepa 1c1c7, and strong cytotoxic effect on proliferation of human tumor cell lines, A549 and XF498.

  • PDF

Comparison of Glutathione S-transferase-${\pi}$ Content in Drug-resistant and -sensitive Cancer Cells

  • Hong, Soon-Duck;Lee, Sang-Han
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.40-44
    • /
    • 1999
  • Glutathione S-transferase (GST) is a multifunctional protein that catalyzes the catalyzes the conjugation of glutathione with electrophilic compounds. It exists in a variety of isoenzy-matic froms with a wide range of substrate specificity and plays a pivotal role in detoxification of various drugs. In order to elucidate the GST-${\pi}$'s involvement of multidrug resistance (MDR) in drug-resistant tumor cell lines, we determined GST-${\pi}$ content by "1 step sandwich method". Consequently, adriamycin resistant cells of MCF-7 (MCF-7/ADM) have 7-fold increase of GST-${\pi}$ content than that of MCF-7 cells, while its {TEX}$IC_{50}${/TEX} was 116-fold greater than parent cell line. By northrn blotting, we compared whether MCF-7/ADM cells express GST-${\pi}$ mRNA. The GST-${\pi}$ mRNA expression in these cells was not inducible, but constitutive when treated for 24 h with a concentration of 0, 20, 200, and 2000 nM of adriamycin, respectively. Taken together, these results suggest that GST-${\pi}$ may not be directly associated with multidrug resistance in these human cancer cell lines.ell lines.

  • PDF

A Bacterial Metabolite, Compound K, Induces Programmed Necrosis in MCF-7 Cells via GSK3β

  • Kwak, Chae Won;Son, Young Min;Gu, Min Jeong;Kim, Girak;Lee, In Kyu;Kye, Yoon Chul;Kim, Han Wool;Song, Ki-Duk;Chu, Hyuk;Park, Byung-Chul;Lee, Hak-Kyo;Yang, Deok-Chun;Sprent, Jonathan;Yun, Cheol-Heui
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1170-1176
    • /
    • 2015
  • Ginsenosides, the major active component of ginseng, are traditionally used to treat various diseases, including cancer, inflammation, and obesity. Among these, compound K (CK), an intestinal bacterial metabolite of the ginsenosides Rb1, Rb2, and Rc from Bacteroides JY-6, is reported to inhibit cancer cell growth by inducing cell-cycle arrest or cell death, including apoptosis and necrosis. However, the precise effect of CK on breast cancer cells remains unclear. MCF-7 cells were treated with CK ($0-70{\mu}M$) for 24 or 48 h. Cell proliferation and death were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. Changes in downstream signaling molecules involved in cell death, including glycogen synthase kinase $3\beta$ ($GSK3\beta$), $GSK3\beta$, $\beta$-catenin, and cyclin D1, were analyzed by western blot assay. To block $GSK3\beta$ signaling, MCF-7 cells were pretreated with $GSK3\beta$ inhibitors 1 h prior to CK treatment. Cell death and the expression of $\beta$-catenin and cyclin D1 were then examined. CK dose- and time-dependently inhibited MCF-7 cell proliferation. Interestingly, CK induced programmed necrosis, but not apoptosis, via the $GSK3\beta$ signaling pathway in MCF-7 cells. CK inhibited $GSK3\beta$ phosphorylation, thereby suppressing the expression of $\beta$-catenin and cyclin D1. Our results suggest that CK induces programmed necrosis in MCF-7 breast cancer cells via the $GSK3\beta$ signaling pathway.