• 제목/요약/키워드: MCF-7 human breast cancer cell

검색결과 320건 처리시간 0.03초

New HDAC inhibitor, IN2001 induces apoptosis/cell cycle arrest in human breast cancer cells

  • Joung, Ki-Eun;Min, Kyung-Nan;Cho, Min-Jung;An, Jin-Young;Kim, Dae-Ki;Sheen, Yhun-Yhong
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.90-90
    • /
    • 2003
  • The acetylation of histone is one of the mechanisms involved in the regulation of gene expression and is tightly controlled by two core enzymes, histone acetyltransferase (HAT) and deacetylase (HDAC). There are several reports that imbalance of HAT and HDAC activity is associated with abnormal behavior of the cells in morphology, cell cycle, differentiation, and carcinogenesis. Recently, an increasing number of structurally diverse HDAC inhibitors have been identified that inhibit proliferation and induce differentiation and/or apoptosis of tumor cells in vivo and in vitro. In this study, we have investigated the effects of novel HDAC inhibitors, IN2001 on ER positive and ER negative human breast cancer cell lines. The growth inhibition, cell cycle arrest and apoptosis of cells by HDAC inhibitors were determined using SRB assay, DNA fragmentation, and flow cytometry. We found that IN 2001 as well as Trichostatin A inhibited cell growth dose-dependently in both ER positive and ER negative human breast cancer cell lines. The growth inhibition with HDAC inhibitors was associated with profound morphological change. The result of cell cycle analysis after 24 h exposure of IN2001 showed G2-M cell cycle arrest in MCF-7 cell and apoptosis in T47D and MDA-MB-231 cell. In summary, IN2001 has antiproliferative effect on human breast cancer cells regardless of the expression of estrogen receptor. These findings heights the possibility of developing HDAC inhibitors as potential anticancer therapeutic agents for the treatment of breast cancer.

  • PDF

New HDAC inhibitor, IN2001 induces apoptosis/cell cycle arrest in human breast cancer cells

  • Euno, Joung-Ki;Nan, Min-Kyung;Jung, Cho-Min;Young, An-Jin;Kim, -Dae-Ki;Yhong, Sheen-Yhun
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2003년도 추계국제학술대회
    • /
    • pp.180-180
    • /
    • 2003
  • The acetylation of histone is one of the mechanisms involved in the regulation of gene expression and is tightly controlled by two core enzymes, histone acetyltransferase (HAT) and deacetylase (HDAC). There are several reports that imbalance of HAT and HDAC activity is associated with abnormal behavior of the cells in morphology, cell cycle, differentiation, and carcinogenesis. Recently, an increasing number of structurally diverse HDAC inhibitors have been identified that inhibit proliferation and induce differentiation and/or apoptosis of tumor cells in vivo and in vitro. In this study, we have investigated the effects of novel HDAC inhibitors, IN2001 on ER positive and ER negative human breast cancer cell lines. The growth inhibition, cell cycle arrest and apoptosis of cells by HDAC inhibitors were determined using SRB assay, DNA fragmentation, and flow cytometry. We found that IN 2001 as well as Trichostatin A inhibited cell growth dose-dependently in both ER Positive and ER negative human breast cancer cell lines. The growth inhibition with HDAC inhibitors was associated with profound morphological change. The result of cell cycle analysis after 24 h exposure of IN2001 showed G2-M cell cycle arrest in MCF-7 cell and apoptosis in T47B and MDA-MB-231 cell. In summary, IN2001 has antiproliferative effect on human breast cancer cells regardless of the expression of estrogen receptor. These findings heights the possibility of developing HDAC inhibitors as potential anticancer therapeutic agents for the treatment of breast cancer.

  • PDF

The Role of Kif4A in Doxorubicin-Induced Apoptosis in Breast Cancer Cells

  • Wang, Hui;Lu, Changqing;Li, Qing;Xie, Jun;Chen, Tongbing;Tan, Yan;Wu, Changping;Jiang, Jingting
    • Molecules and Cells
    • /
    • 제37권11호
    • /
    • pp.812-818
    • /
    • 2014
  • This study was to investigate the mechanism and role of Kif4A in doxorubicin-induced apoptosis in breast cancer. Using two human breast cancer cell lines MCF-7 (with wild-type p53) and MDA-MB-231 (with mutant p53), we quantitated the expression levels of kinesin super-family protein 4A (Kif4A) and poly (ADP-ribose) Polymerase-1 (PARP-1) by Western blot after doxorubicin treatment and examined the apoptosis by flow cytometry after treatment with doxorubicin and PARP-1 inhibitor, 3-Aminobenzamide (3-ABA). Our results showed that doxorubicin treatment could induce the apoptosis of MCF-7 and MDA-MB-231 cells, the down-regulation of Kif4A and upregulation of poly(ADP-ribose) (PAR). The activity of PARP-1 or PARP-1 activation was significantly elevated by doxorubicin treatment in dose- and time-dependent manners (P < 0.05), while doxorubicin treatment only slightly elevated the level of cleaved fragments of PARP-1 (P > 0.05). We further demonstrated that overexpression of Kif4A could reduce the level of PAR and significantly increase apoptosis. The effect of doxorubicin on apoptosis was more profound in MCF-7 cells compared with MDA-MB-231 cells (P < 0.05). Taken together, our results suggest that the novel role of Kif4A in doxorubicin-induced apoptosis in breast cancer cells is achieved by inhibiting the activity of PARP-1.

감초로 배양한 표고버섯 균사체 추출물이 항암 효과 및 알레르기 억제 효과 검증 (Anti-Cancer and Anti-Allergy Activities of Mycelia Extracts of Lentinus edodes Mushroom-Cultured Glycyrrhiza radix)

  • 배만종;이성태;예은주
    • 동아시아식생활학회지
    • /
    • 제17권1호
    • /
    • pp.43-50
    • /
    • 2007
  • This study investigated the effects of mycelia of Lentinus edodes mushroom-cultured Glycyrrihiza radix(LMG) on cancer cell lines and sarcoma 180(S-180), as well as on human mast cells. In an anti-cancer tests using Hep3B(hepatic cancer cell), MCF-7(breast cancer), and HeLa(uterine cancer) cells, LMG extract exhibited greater anti-proliferation effects than Glycyrrihiza glabra(GG) extract. LMG extract multiplication restraining effects were 60% that of ethanol at 3 mg/mL extract also displayed tumor suppressive effects in mice injected with S-180 cells. The growth-inhibition rates against tumor cells were 56% for LMG and 37% for GG. When LMG was added to human mast cells, the Intensity of RT-PCR products using primers($FC{\varepsilon}RI\;c-kit$) decreased. significantly compared with that of control. These results suggest that Lentinus edodes Mushroom-Cultured Glycyrrhiza glabra has an anti-proliferation effects against cancer cell lines(Hep3B, MCF-7 and HeLa) and S-180 tumors and will be also beneficial in treating allergic reactions.

  • PDF

Antiestrogen Interaction with Estrogen Receptors and Additional Antiestrogen Binding sites in Human Breast Cancer MCF-7 Cells

  • Ahn, Mee-Ryung;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • 제20권6호
    • /
    • pp.579-585
    • /
    • 1997
  • To gain further insight into the mechanism of action of antiestrogens, we examined the interaction of antiestrogen with the estrogen receptor system and with estrogen- noncompetable antiestrogen binding sites. In addition to binding directly to the estrogen receptor, antiestrogens can be found associated with binding sites that are distinct from the estrogen receptor. In contrast to the restriction of estrogen receptors to estrogen target cells, such as those of uterus and mammary glands, antiestrogen binding sites are present in equal amounts in estrogen receptor-positive and -negative human breast cancer cell lines, such as MCF-7, T47D, and MDA-MB-231 that differ markedly in their sensitivity to antiestrogens. In order to gain greater insight into the role of these antiestrogen binding sites in the action of antiestrogens, we have examined the biopotency of different antiestrogens for the antiestrogen binding sites and that is CI628 > tamoxifen > trans-hydroxy tamoxifen > CI628M > H1285 > LY117018. This order of affinities does not parallel the affinity of these compounds for the estrogen receptor nor the potency of these compounds as antiestrogens. Indeed, compounds with high affinity for the estrogen receptor and greatest antiestrogenic potency have low affinities for these antiestrogen binding sites. Antiestrogenic potency correlates best with estrogen receptor affinity and not with affinity for antiestrogen binding sites. In summary, our findings suggested that interaction with the estrogen receptor is most likely the mechanism through which antiestrogens evoke their growth inhibitory effects.

  • PDF

Inhibition of P-Glycoprotein by Natural Products in Human Breast Cancer Cells

  • Chung, Soo-Yeon;Sung, Min-Kyung;Kim, Na-Hyung;Jang, Jung-Ok;Go, Eun-Jung;Lee, Hwa-Jeong
    • Archives of Pharmacal Research
    • /
    • 제28권7호
    • /
    • pp.823-828
    • /
    • 2005
  • Multidrug resistance (MDR) is one of the most significant obstacles in cancer chemotherapy. One of the mechanisms involved in the development of MDR is the over-expression of P-glycoprotein (P-gp). It is widely known that natural compounds found in vegetables, fruits, plant-derived beverages and herbal dietary supplements not only have anticancer properties, but may also modulate P-gp activity. Therefore, the purpose of this investigation was to examine the effects of naturally occurring products on P-gp function in human breast cancer cell lines, MCF-7 (sensitive) and MCF-7/ADR (resistant). The accumulation of daunomycin (DNM), a P-gp substrate, was greater in the sensitive cells compared to the resistant cells, while the efflux of DNM was higher in the resistant cells compared to the sensitive cells over a period of 2h. The $IC_{50}$ value of DNM in the resistant cells was about 22 times higher than that in the sensitive cells, indicating an over-expression of P-gp in the resistant cells, MCF-7/ADR. All of the compounds tested, with the exception of fisetin, significantly decreased the $IC_{50}$ value of DNM. Biochanin A showed the greatest increase in $[^3H]-DNM$ accumulation, increasing by $454.3{\pm}19.5%$ in the resistant cells, whereas verapamil, the positive control, increased the accumulation by $229.4{\pm}17.6%$. Also, the accumulation of $[^3H]-DNM$ was increased substantially by quercetin and silymarin while it was reduced by fisetin. Moreover, biochanin A, silymarin, and naringenin significantly decreased DNM efflux from MCF-7/ADR cells compared with the control. These results suggest that some flavonoids such as biochanin A and silymarin may reverse MDR by inhibiting the P-gp function.

Cell Cycle Modulation of MCF-7 and MDA-MB-231 by a Sub-Fraction of Strobilanthes crispus and its Combination with Tamoxifen

  • Yaacob, Nik Soriani;Kamal, Nik Nursyazni Nik Mohamed;Wong, Kah Keng;Norazmi, Mohd Nor
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권18호
    • /
    • pp.8135-8140
    • /
    • 2016
  • Background: Cell cycle regulatory proteins are suitable targets for cancer therapeutic development since genetic alterations in many cancers also affect the functions of these molecules. Strobilanthes crispus (S. crispus) is traditionally known for its potential benefits in treating various ailments. We recently reported that an active sub-fraction of S. crispus leaves (SCS) caused caspase-dependent apoptosis of human breast cancer MCF-7 and MDA-MB-231 cells. Materials and Methods: Considering the ability of SCS to also promote the activity of the antiestrogen, tamoxifen, we further examined the effect of SCS in modulating cell cycle progression and related proteins in MCF-7 and MDA-MB-231 cells alone and in combination with tamoxifen. Expression of cell cycle-related transcripts was analysed based on a previous microarray dataset. Results: SCS significantly caused G1 arrest of both types of cells, similar to tamoxifen and this was associated with modulation of cyclin D1, p21 and p53. In combination with tamoxifen, the anticancer effects involved downregulation of $ER{\alpha}$ protein in MCF-7 cells but appeared independent of an ER-mediated mechanism in MDA-MB-231 cells. Microarray data analysis confirmed the clinical relevance of the proteins studied. Conclusions: The current data suggest that SCS growth inhibitory effects are similar to that of the antiestrogen, tamoxifen, further supporting the previously demonstrated cytotoxic and apoptotic actions of both agents.

In Vitro Antitumor Properties of an Isolate from Leaves of Cassia alata L

  • Olarte, Elizabeth Iglesias;Herrera, Annabelle Aliga;Villasenor, Irene Manese;Jacinto, Sonia Donaldo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.3191-3196
    • /
    • 2013
  • Leaf extracts of Cassia alata L (akapulko), traditionally used for treatment of a variety of diseases, were evaluated for their potential antitumor properties in vitro. MTT assays were used to examine the cytotoxic effects of crude extracts on five human cancer cell lines, namely MCF-7, derived from a breast carcinoma, SK-BR-3, another breast carcinoma, T24 a bladder carcinoma, Col 2, a colorectal carcinoma, and A549, a nonsmall cell lung adenocarcinoma. Hexane extracts showed remarkable cytotoxicity against MCF-7, T24, and Col 2 in a dose-dependent manner. This observation was confirmed by morphological investigation using light microscopy. Further bioassay-directed fractionation of the cytotoxic extract led to the isolation of a TLC-pure isolate labeled as f6l. Isolate f6l was further evaluated using MTT assay and morphological and biochemical investigations, which likewise showed selectivity to MCF-7, T24, and Col 2 cells with $IC_{50}$ values of 16, 17, and 17 ${\mu}g/ml$, respectively. Isolate f6l, however, showed no cytotoxicity towards the non-cancer Chinese hamster ovarian cell line (CHO-AA8). Cytochemical investigation using DAPI staining and biochemical investigation using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-a method used to detect DNA fragmentation-together with caspase assay, demonstrated apoptotic cell death. Spectral characterization of isolate f6l revealed that it contained polyunsaturated fatty acid esters. Considering the cytotoxicity profile and its mode of action, f6l might represent a new promising compound with potential for development as an anticancer drug with low or no toxicity to non-cancer cells used in this study.

청국장의 암세포생장억제효과 및 흰쥐에서 DMBA 투여에 의한 유방종양발생 억제효과 (Cytotoxicity on Human Cancer Cells and Antitumorigenesis of Chungkookjang, a Fermented Soybean Product, in DMBA-Treated Rats)

  • 곽충실;김미연;김성애;이미숙
    • Journal of Nutrition and Health
    • /
    • 제39권4호
    • /
    • pp.347-356
    • /
    • 2006
  • It is reported that a fermented soybean food, Doenjang, has srong antimutagenic and cytotoxic effect on cancer cells. This study investigated the effect of Chungkookjang, another traditional popular Korean soybean fermented food, on growth of cancer cells: HL-60, SNU-638 and MCF-7, and also its in vivo antitumorigenic effect in DMBA-induced mammary tumor rat model. For the in vitro study, Chungkookjang and steamed soybeans were extracted with ethanol and sequentially fractioned with 5 kinds of solvents differing in grades of polarity such as hexane, dichloromethane, ethylacetate, butanol and water. Almost all Chungkookjang extracts significantly inhibited the growth of HL-60 (human leukemic cancer cell), SNU-638 (human gastric cancer cell) and MCF-7 (human breast cancer cell) when compared to steamed soybean extracts. Butanol fraction of Chungkookjang extract especially showed a remarkable inhibitory effect in all the three kinds of cancer cells. To induce a mammary gland tumor, DMBA (50 mg/BW) was administered to 50 day-old female rats and followed by Chungkookjang or steamed soybean supplemented diets. Freezedried Chungkookjang powder (20% of diet in wet weight) was added to AIN-93G based diet for the Chungkookjang group of rats. Likewise, steamed soybean powder containing equal protein content to that of Chungkookjang powder was supplemented to soybean group of rats. At 13 weeks later, the mammary tumor incidence, average tumor number and tumor weight a rat were lower in Chungkookjang group compared to the control or soybean group. In conclusion, Chungkookjang showed a strong inhibitory effect on cancer cell growth in vitro, as well as a more preventive effect against chemically induced mammary tumorigenesis in vivo, while steamed soybeans did not. Therefore, these results suggest that Chungkookjang acquire its anticancer activity through the fermentation process.

Orthosiphon pallidus, a Potential Treatment for Patients with Breast Cancer

  • Singh, Mukesh K.;Dhongade, Hemant;Tripathi, Dulal Krishna
    • 대한약침학회지
    • /
    • 제20권4호
    • /
    • pp.265-273
    • /
    • 2017
  • Objective: Orthosiphon pallidus (O. pallidus), which belongs to the Lamiaceae family, is a popular garden plant that is widely used for the treatment of various diseases, such as urinary lithiasis, fever, hepatitis, cancer and jaundice. The objective of the present work was to investigate the antioxidant free-radical scavenging and the anticancer activities of O. pallidus against human breast-cancer cell lines. Methods: The antioxidant activity of Orthosiphon pallidus aqueous extract (OPAE) was investigated using different models, such as the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the 2, 2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) models, as were the $Fe^+$ chelation, the hydroxyl radical and superoxide radical scavenging, and total reducing power activities. The anticancer activities of the extract were determined by using the 3-(4, 5- dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) and the sulforhodamine (SRB) assays on the MCF-7 and the MDA-MB-231 cancer cell lines. Results: The aqueous Orthosiphon pallidus extract showed potent activity in in-vitro models. It significantly inhibited the scavenging of hydroxyl and superoxide radicals, but induced a remarkable $Fe^+$ chelation activity. For both cell lines, the percent cytotoxicity was found to increase steadily with increasing OPAE concentration up to $240{\mu}g/mL$. Conclusion: These results suggest that Orthosiphon pallidus has excellent antioxidant, antimicrobial, and anticancer activities against human breast-cancer cell lines.